Assessment of culture medium without commercial ammonium nitrate for in vitro culture of industrially important plant species

Author(s):  
Vikram Singh ◽  
Ravishankar Chauhan ◽  
Inderpal Kaur ◽  
Afaque Quraishi
Author(s):  
V. I. Malyarovskaya ◽  
R. S. Rakhmangulov ◽  
N. G. Koninskaya

One of the important stages for the propagation of the rare endangered fern Osmunda regalis L. through spores is the regeneration of sporophytes from gametophytes at in vitro culture. The article shows that the effective formation of O. regalis sporophytes occurred earlier (after 60 days) and in a larger percentage (51.6%) on a culture medium with a lower salt content % MS, and the exclusion of ammonium nitrate and vitamins from the medium is significantly enhanced the growth of sporophytes, compared with other variants of media and control.


2021 ◽  
Vol 2 (2) ◽  
pp. 538-553
Author(s):  
Natacha Coelho ◽  
Alexandra Filipe ◽  
Bruno Medronho ◽  
Solange Magalhães ◽  
Carla Vitorino ◽  
...  

In vitro culture is an important biotechnological tool in plant research and an appropriate culture media is a key for a successful plant development under in vitro conditions. The use of natural compounds to improve culture media has been growing and biopolymers are interesting alternatives to synthetic compounds due to their low toxicity, biodegradability, renewability, and availability. In the present study, different culture media containing one biopolymer (chitosan, gum arabic) or a biopolymer derivative [hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC)], at 100 or 1000 mg L−1, were tested regarding their influence on the growth and physiological responses of Thymus lotocephalus in vitro culture. Cellulose-based biopolymers (HEC and CMC) and gum arabic were used for the first time in plant culture media. The results showed that CMC at 100 mg L−1 significantly improved shoot elongation while chitosan, at the highest concentration, was detrimental to T. lotocephalus. Concerning only the evaluated physiological parameters, all tested biopolymers and biopolymer derivatives are safe to plants as there was no evidence of stress-induced changes on T. lotocephalus. The rheological and microstructural features of the culture media were assessed to understand how the biopolymers and biopolymer derivatives added to the culture medium could influence shoot growth. As expected, all media presented a gel-like behaviour with minor differences in the complex viscosity at the beginning of the culture period. Most media showed increased viscosity overtime. The surface area increased with the addition of biopolymers and biopolymer derivatives to the culture media and the average pore size was considerably lower for CMC at 100 mg L−1. The smaller pores of this medium might be related to a more efficient nutrients and water uptake by T. lotocephalus shoots, leading to a significant improvement in shoot elongation. In short, this study demonstrated that the different types of biopolymers and biopolymer derivatives added to culture medium can modify their microstructure and at the right concentrations, are harmless to T. lotocephalus shoots growing in vitro, and that CMC improves shoot length.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
F Du ◽  
R Li ◽  
Q Zhang ◽  
W Wang

Abstract Study question what is the source, prevalence, and influence of microbial contamination on in vitro fertilization (IVF) and embryo transfer (ET) cycles? Summary answer Microbial contamination mainly occurs on Day 2, most caused by Escherichia coli carried with semen. ICSI could prevent contamination effectively and get good clinical outcomes. What is known already Microbial contamination occurs in IVF-ET system occasionally, which is hard to stop happening. The IVF culture system and laboratory environment, the patients’ follicular fluid and semen are not absolutely sterile, while the antibiotics in culture medium isn’t effective for all microbe types, and the artificial operations may bring in microbes. Generally, microbial contamination leads to degradation of embryos, reduction the number of embryos available, and infection of female reproductive tract, which would increase the cost of patients’ time, money, and bring psychological damages. A better understanding of embryo contamination in IVF culture system is of added value. Study design, size, duration A total of 29583 IVF-ET cycles were enrolled in this prospective observational study, from January 2010 to December 2020, included 70 microbial contamination cycles discovered in Day1-Day3 (D1-D3) of in vitro culture. Follicular fluid and semen saved on oocyte retrieval day, and culture medium contaminated were examined and identified for microorganisms at each contamination cycle. Participants/materials, setting, methods Compared the contamination rate of different insemination methods (IVF/ICSI/IVF+ICSI), different in vitro culture days (D1-D3), and different samples examination (follicular fluid, semen, culture medium) respectively, identified the source of microorganism types, compared the IVF culture outcomes and clinical outcomes between total contamination group (TC group, 42 cases) and partial contamination group (PC group, 28 cases). Main results and the role of chance A total of 70 microbial contamination cases occurred in 29583 oocyte retrieving cycles (0.24%), and it was observed only in IVF embryos but never in ICSI (Intracytoplasmic sperm injection) embryos. 38 contamination cases occurred on D2 with a highest ratio (54.3%) compared to D1 (32.9%) and D3(12.9%); Compared with follicular fluid, semen was the main cause inducing contamination from D1 to D3, and Escherichia coli in semen and culture medium, Enterococcus faecalis in follicular fluid proved to be the most common sources. Compared with TC group, the PC group showed a lower rate of No-available embryos (21.4% vs 81.0%) and a higher rate of blastocyst formation (41.2% vs 28.6%), In addition, the clinical pregnancy rate of PC group was higher than that of TC group in both fresh and frozen-thawed embryo transfer cycles (31.3% vs 16.7%, 38.5% vs 0.0%). Limitations, reasons for caution Further study is still necessary to better understand the sources that induce microbial contamination embryos, and more efficient methods are required to remove the microbes on these contaminated embryos so as better develop and manage a sterile micro-environment for successful embryo growth. Wider implications of the findings: The differential embryonic microbe types associated to different IVF culture and clinical outcomes in patients undergoing IVF-ET might have profound implications for understanding the microbial sources and making a better management of IVF culture system. Trial registration number Not applicable


Development ◽  
1974 ◽  
Vol 32 (2) ◽  
pp. 515-532
Author(s):  
A. Colman

RNA synthesis can be maintained in large oocytes of Xenopus laevis during periods of in vitro culture of at least 10 days. A simple salt medium, modified Barth's solution, is found to be as effective a culture medium for these oocytes as several other complex media. The newly synthesized RNA is characterized electrophoretically and shown to consist predominantly of ribosomal RNA precursor, 28S and 18S ribosomal RNA, and 4S RNA. The distribution of this RNA within the oocyte is detected autoradiographically, where it is found to be greatly concentrated over the nucleoli. No qualitative alterations in either of these parameters are found during culture, within the limits of sensitivity of the assay procedures.


1997 ◽  
Vol 35 (9) ◽  
pp. 2430-2431 ◽  
Author(s):  
M E Limoncu ◽  
I C Balcioğlu ◽  
K Yereli ◽  
Y Ozbel ◽  
A Ozbilgin

2020 ◽  
Vol 26 (1) ◽  
pp. 18-34 ◽  
Author(s):  
Elizangela Rodrigues Santos ◽  
João Paulo Rodrigues Martins ◽  
Luiz Carlos de Almeida Rodrigues ◽  
Andreia Barcelos Passos Lima Gontijo ◽  
Antelmo Ralph Falqueto

Abstract When propagated in vitro, explants receive all the nutrients needed for their growth, including carbohydrates, from the culture medium. However, it is not well understood how the type and concentration of carbohydrates can affect the functioning of the photosynthetic apparatus (particularly photosystem II) of these plants. The aim was to assess the morphophysiological responses of Billbergia zebrina plants in function of sources and concentrations of carbohydrates during in vitro culture. Side shoots of plants previously established in vitro were individualized and transferred to a culture medium containing fructose, glucose or sucrose in four concentrations (0, 15, 30 or 45 g L−1). After growth for 55 days, the chlorophyll a fluorescence transient, leaf anatomy and growth were analyzed. The concentration and type of carbohydrate employed during in vitro culture did not decrease the photosynthetic apparatus performance. However, concentrations above 30 g L−1 led to anatomical modifications, revealing some degree of stress suffered by the plants. When grown in concentrations of 15 and 30 g L−1, irrespective of the carbohydrate used, the plants presented greater stomatal density. The supplementation of the culture medium with monosaccharides caused alterations in the development of the xylem vessels, such as increased number and diameter, allowing adjustment to the microenvironmental conditions. The in vitro conditions influenced the photosynthetic and anatomical responses of plants. The concentration interval from 15 to 30 g L−1 sucrose had a better effect by not causing large changes in the performance of the photosynthetic apparatus and anatomy of plants.


2017 ◽  
Vol 29 (1) ◽  
pp. 188
Author(s):  
N. C. Negota ◽  
L. P. Nethenzheni ◽  
M. L. Mphaphathi ◽  
D. M. Barry ◽  
T. L. Nedambale

The in vitro culture media and assisted hatching techniques remain challenging obstacles to be utilised widely. Mechanical, chemical, enzymatic thinning, and laser-assisted techniques have been used previously but information is still lacking on its application in livestock. The aim of this study was to compare the effect of 2 in vitro culture media (Hamster F10 and TMC-199) and 4 (mechanical, chemical, enzymatic, and laser) assisted hatching techniques on blastocyst formation and hatching rate using murine embryos as a model. The C57/b and Balb/c breeds were raised until they reached maturity and bred naturally to produce F1 generation. The light in the breeding house was controlled at 14 h light and 10 h dark. Feed and water were provided ad libitum for the mice. Superovulation of females were stimulated using equine chorionic gonadotropin and human chorionic gonadotropin. The F1 generation was used for the collection of the 400 blastocysts and randomly allocated into 4 assisted hatching techniques. Blastocysts were paired into a group of 10 and replicated 4 times for each assisted hatching technique. The general linear model of SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used to analyse the data. Assisted hatching techniques of laser, mechanical, enzymatic, and chemical yielded 46.9 ± 37.1, 51.1 ± 40.2, 39.1 ± 35.8, and 33.3 ± 4.5%, respectively, under in vitro culture of Hamster F10. The TCM-199, laser, mechanical, enzymatic, and chemical assisted hatching techniques yielded 56.3 ± 43.3, 52.6 ± 35.5, 49.2 ± 37.5, and 33.9 ± 35.5%, respectively, with a significant difference. There was no significant difference observed in assisted hatching techniques and Hamster F10 culture medium. However, the hatching rate of embryos for all techniques was higher when in vitro cultured in TCM than cultured in Hamster F10. Hatching rate of blastocysts increased from chemical, enzymatic, mechanical, and laser with response to Hamster F10 and TCM; thus, laser is a suitable assisted hatching technique with TCM-199.


2014 ◽  
Vol 30 (1) ◽  
pp. 20-27 ◽  
Author(s):  
A. De Vos ◽  
R. Janssens ◽  
H. Van de Velde ◽  
P. Haentjens ◽  
M. Bonduelle ◽  
...  

2010 ◽  
Vol 27 (5) ◽  
pp. 247-257 ◽  
Author(s):  
Xiayu Peng ◽  
Mei Yang ◽  
Liqin Wang ◽  
Chen Tong ◽  
Zhiqin Guo

Sign in / Sign up

Export Citation Format

Share Document