An Investigation of Polymer Mechanical Degradation in Radial Well Geometry

2019 ◽  
Vol 128 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Oddbjørn Nødland ◽  
Arild Lohne ◽  
Arne Stavland ◽  
Aksel Hiorth
TAPPI Journal ◽  
2018 ◽  
Vol 17 (01) ◽  
pp. 31-37
Author(s):  
Bryan McCulloch ◽  
John Roper ◽  
Kaitlin Rosen

Barrier coatings are used in applications including food packaging, dry goods, and consumer products to prevent transport of different compounds either through or into paper and paperboard substrates. These coatings are useful in packaging to contain active ingredients, such as fragrances, or to protect contents from detrimental substances, such as oxygen, water, grease, or other chemicals of concern. They also are used to prevent visual changes or mechanical degradation that might occur if the paper becomes saturated. The performance and underlying mechanism depends on the barrier coating type and, in particular, on whether the barrier coating is designed to prevent diffusive or capillary transport. Estimates on the basis of fundamental transport phenomena and data from a broad screening of different barrier materials can be used to understand the limits of various approaches to construct barrier coatings. These estimates also can be used to create basic design rules for general classes of barrier coatings.


1973 ◽  
Vol 1 (4) ◽  
pp. 354-362 ◽  
Author(s):  
F. R. Martin ◽  
P. H. Biddison

Abstract Treads made with emulsion styrene-butadiene copolymer (SBR), solution SBR, polybutadiene (BR), and a 60/40 emulsion SBR/BR mixture were built as four-way tread sections on G78-15 belted bias tires, which were driven over both concrete and gravel-textured highways and on a small, circular, concrete test track. The tires were front mounted. When driven on concrete highway, all except the BR tread had either crumbled- or liquid-appearing surfaces, thought to have been formed by mechanical degradation or fatigue. When cornered on concrete, these materials formed small cylindrical particles or rolls. The BR tread had a smooth, granular-textured surface when driven on concrete highway and a ridge or sawtooth abrasion pattern when cornered on concrete. All the materials appeared rough and torn when run on gravel-textured highway. The differences in wear surface formed on BR tread and the other three are thought to be due primarily to the relatively high resilience of BR.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Vol 15 ◽  
pp. 963-970 ◽  
Author(s):  
Sora Park ◽  
Jeung Gon Kim

Mechanochemical polymerization is a rapidly growing area and a number of polymeric materials can now be obtained through green mechanochemical synthesis. In addition to the general merits of mechanochemistry, such as being solvent-free and resulting in high conversions, we herein explore rate acceleration under ball-milling conditions while the conventional solution-state synthesis suffer from low reactivity. The solvent-free mechanochemical polymerization of trimethylene carbonate using the organocatalysts 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) are examined herein. The polymerizations under ball-milling conditions exhibited significant rate enhancements compared to polymerizations in solution. A number of milling parameters were evaluated for the ball-milling polymerization. Temperature increases due to ball collisions and exothermic energy output did not affect the polymerization rate significantly and the initial mixing speed was important for chain-length control. Liquid-assisted grinding was applied for the synthesis of high molecular weight polymers, but it failed to protect the polymer chain from mechanical degradation.


2020 ◽  
pp. 088532822097735
Author(s):  
Fedra P Zaribaf ◽  
Harinderjit S Gill ◽  
Elise C Pegg

Ultra-high molecular weight polyethylene (UHMWPE) can be made radiopaque for medical imaging applications through the diffusion of an iodised oil-based contrast agent (Lipiodol Ultra Fluid). A similar process is used for Vitamin E incorporated polyethylene which provides antioxidant properties. This study aimed to investigate the critical long-term properties of oil-infused medical polyethylene after 4 weeks of accelerated thermal ageing. Samples treated with an oil (Vitamin E or Lipiodol) had a higher oxidation stability than currently used medical grade polyethylene, indicated by a smaller increase in oxidation index after ageing (Vitamin E + 36%, Lipiodol +40%, Untreated +136%, Thermally treated +164%). The tensile properties of oil treated polyethylene after ageing were significantly higher than the Untreated and Thermally treated controls (p<0.05) indicating less mechanical degradation. There was also no alteration in the percentage crystallinity of oil treated samples after ageing, though the radiopacity of the Lipiodol treated samples reduced by 54% after ageing. The leaching of oil with time was also investigated; the leaching of Lipiodol and Vitamin E followed the same trend and reached a steady state by two weeks. Overall, it can be concluded that the diffusion of an oil-based fluid into polyethylene not only increases the oxidative and chemical stability of polyethylene but also adds additional functionality (e.g. radiopacity) providing a more suitable material for long–term medical applications.


Author(s):  
Xia Hua ◽  
Alan Thomas

Lithium-ion batteries are being increasingly used as the main energy storage devices in modern mobile applications, including modern spacecrafts, satellites, and electric vehicles, in which consistent and severe vibrations exist. As the lithium-ion battery market share grows, so must our understanding of the effect of mechanical vibrations and shocks on the electrical performance and mechanical properties of such batteries. Only a few recent studies investigated the effect of vibrations on the degradation and fatigue of battery cell materials as well as the effect of vibrations on the battery pack structure. This review focused on the recent progress in determining the effect of dynamic loads and vibrations on lithium-ion batteries to advance the understanding of lithium-ion battery systems. Theoretical, computational, and experimental studies conducted in both academia and industry in the past few years are reviewed herein. Although the effect of dynamic loads and random vibrations on the mechanical behavior of battery pack structures has been investigated and the correlation between vibration and the battery cell electrical performance has been determined to support the development of more robust electrical systems, it is still necessary to clarify the mechanical degradation mechanisms that affect the electrical performance and safety of battery cells.


Author(s):  
Michael Wendler ◽  
Anja Stenger ◽  
Julian Ripper ◽  
Eva Priewich ◽  
Renan Belli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document