Transient and Pseudo-Steady-State Inflow Performance Relationships for Multiphase Flow in Fractured Unconventional Reservoirs

2018 ◽  
Vol 126 (3) ◽  
pp. 743-777 ◽  
Author(s):  
Salam Al-Rbeawi
Author(s):  
Bowen Ma ◽  
Narakorn Srinil

Deep-water flexible risers conveying hydrocarbon oil and gas flows may be subject to internal dynamic fluctuations associated with the spatial variations of phase densities, velocities and pressure drops. Many studies have focused on single-phase flows in pipes whereas understanding of multiphase flow effects is lacking. This study aims to investigate the planar free-vibration characteristics of a long flexible catenary riser carrying the steady-state, multiphase slug oil-gas flows in order to understand how the inclination-dependent internal slug flows affect riser natural frequencies and modal shapes. The influence of slug characteristics such as phase velocities on the riser vibration is also studied. The catenary riser planar motions are mathematically described by a two-dimensional continuum model capturing coupled horizontal and vertical responses. Based on the selected two-phase flow rates at the wellhead, riser geometric configurations and specified slug unit lengths, a steady-state slug flow model is considered by taking into account several empirical closure correlations and riser mechanical properties, solving for the multiphase flow aspects including pressure, velocities, liquid holdup and gas fraction. By assigning an undamped free-vibration shape of an empty catenary riser as initial displacement conditions, the space-time numerical simulations are performed using a finite difference approach. Comparisons of oscillation frequencies, time histories, phase planes, time-space varying responses and dynamic stresses of catenary risers with and without slug flows are presented, identifying the dynamic modifications arising from the internal slug-induced mass momentum change and pressure loss. To understand the influence of slug flow properties, parametric studies are carried out with different gas velocities. Numerical results highlight the reduced riser tensions, decreased oscillation frequencies, multiple oscillation modes, amplified amplitudes and stresses. These key observations will be useful for the forced vibration analysis of catenary risers subject to combined internal (multiphase) and external (vortex-shedding) flow excitations.


Author(s):  
Amine Meziou ◽  
Majdi Chaari ◽  
Matthew Franchek ◽  
Rafik Borji ◽  
Karolos Grigoriadis ◽  
...  

Presented are reduced-order models of one-dimensional transient two-phase gas–liquid flow in pipelines. The proposed model is comprised of a steady-state multiphase flow mechanistic model in series with a transient single-phase flow model in transmission lines. The steady-state model used in our formulation is a multiphase flow mechanistic model. This model captures the steady-state pressure drop and liquid holdup estimation for all pipe inclinations. Our implementation of this model will be validated against the Stanford University multiphase flow database. The transient portion of our model is based on a transmission line modal model. The model parameters are realized by developing equivalent fluid properties that are a function of the steady-state pressure gradient and liquid holdup identified through the mechanistic model. The model ability to reproduce the dynamics of multiphase flow in pipes is evaluated upon comparison to olga, a commercial multiphase flow dynamic code, using different gas volume fractions (GVF). The two models show a good agreement of the steady-state response and the frequency of oscillation indicating a similar estimation of the transmission line natural frequency. However, they present a discrepancy in the overshoot values and the settling time due to a difference in the calculated damping ratio. The utility of the developed low-dimensional model is the reduced computational burden of estimating transient multiphase flow in transmission lines, thereby enabling real-time estimation of pressure and flow rate.


1998 ◽  
Vol 120 (2) ◽  
pp. 106-110 ◽  
Author(s):  
J. J. Xiao ◽  
G. Shoup

The design of wet-gas pipelines and slug catchers requires multiphase flow simulations, both steady-state and transient. However, steady-state simulation is often inadequately conducted and its potential not fully utilized. This paper shows how mechanistic steady-state simulation models can be used to obtain not only pressure drop, liquid holdup and flow regime, but also to extract important operational information such as pig transit time, pig exit speed, liquid buildup rate behind the pig, and the time for the pipeline to return to a steady-state after pigging. A well-designed set of steady-state simulations helps to determine pipeline size, slug catcher size, and pigging frequency. It also serves as a starting point for subsequent transient multiphase flow simulations.


Author(s):  
Aldo Costantini ◽  
Gioia Falcone ◽  
Geoffrey F. Hewitt ◽  
Claudio Alimonti

The fundamental understanding of the dynamic interactions between multiphase flow in the reservoir and that in the wellbore remains surprisingly weak. The classical way of dealing with these interactions is via inflow performance relationships (IPR’s), where the inflow from the reservoir is related to the pressure at the bottom of the well, which is a function of the multiphase flow behaviour in the well. Steady-state IPR’s are normally adopted, but their use may be erroneous when transient multiphase flow conditions occur. Transient multiphase flow in the wellbore causes problems in well test interpretation when the well is shut-in at surface and the bottomhole pressure is measured. Pressure build-up (PBU) data recorded during a test can be dominated by transient wellbore effects (e.g. phase change, flow reversal and re-entry of the denser phase into the producing zone), making it difficult to distinguish between true reservoir features and transient wellbore artefacts. This paper introduces a method to derive the transient IPR’s at bottomhole conditions in order to link the wellbore to the reservoir during PBU. A commercial numerical simulator was used to build a simplified reservoir model (single well, radial co-ordinates, homogeneous rock properties) using published data from a gas condensate field in the North Sea. In order to exclude wellbore effects from the investigation of the transient inflow from the reservoir, the simulation of the wellbore was omitted from the model. Rather than the traditional flow rate at surface conditions, bottomhole pressure was imposed to constrain the simulation. This procedure allowed the flow rate at the sand face to be different from zero during the early times of the PBU, even if the surface flow rate is equal to zero. As a result, a transient IPR at bottomhole conditions was obtained for the given field case and for a specific set of time intervals, time steps and bottomhole pressure. In order to validate the above simulation approach, a preliminary evaluation of the required experimental set-up was carried out. The set-up would allow the investigation of the dynamic interaction between the reservoir, the near-wellbore region and the well, represented by a pressured vessel, a cylindrical porous medium and a vertical pipe, respectively.


2017 ◽  
Vol 53 (12) ◽  
pp. 10274-10292 ◽  
Author(s):  
Ying Gao ◽  
Qingyang Lin ◽  
Branko Bijeljic ◽  
Martin J. Blunt

2012 ◽  
Vol 26 (7) ◽  
pp. 4145-4157 ◽  
Author(s):  
Mack Shippen ◽  
William J. Bailey

2019 ◽  
Vol 59 (1) ◽  
pp. 268
Author(s):  
Robert Perry ◽  
Jeffrey Martini ◽  
Pandurang Kulkarni

Hydraulic fracturing has significantly increased well inflow performance in unconventional reservoirs, enabling their economic development. This improved inflow performance has opened up the possibility of leveraging further reserves and production gains through artificial lift or similar production enhancement techniques. A ‘multiphase compressor’ has been developed with differentiating characteristics:compression ratios of up to 40:1 (an order of magnitude greater than conventional compressors), ability to handle a broad range of multiphase conditions, and significant operational flexibility. This makes it very well suited for deployment in unconventional reservoirs at the wellhead, either on its own in a multiphase boosting capacity or in conjunction with other forms of artificial lift (such as gas lift, plunger lift, and potentially downhole pumping). The multiphase compressor has been deployed in the field on naturally flowing wells, and wells with plunger lift. Production rate increases of up to 300% were achieved, and production was maintained in wells that would have otherwise loaded up and died. Wells were unloaded by reducing wellhead flowing pressures to atmospheric pressure at the compressor suction – similar to flowing the well into an ‘open topped’ tank. The multiphase compressor demonstrated a very broad operating range and the ability to handle slug flow conditions. Further applications to be tested include gas lift and downhole pumping in shale wells, gas wells that have received fracture hits and require clean up from invaded fracture fluids, and coal seam gas production. Multiphase compression has significant potential to increase both production and reserves from unconventional reservoirs and wells.


Sign in / Sign up

Export Citation Format

Share Document