scholarly journals Studies of the Influence of Temperature and the Energy State of the Surface Layer of Adsorbents on Wall Effects in Soap-Based Greases

2016 ◽  
Vol 65 (1) ◽  
Author(s):  
Maciej Paszkowski ◽  
Roman Wróblewski ◽  
Aleksandra Walaszczyk
2016 ◽  
Vol 150 ◽  
pp. 775-781 ◽  
Author(s):  
V.A. Lebedev ◽  
A.V. Kirichek ◽  
V.D. Sokolov
Keyword(s):  

2017 ◽  
Vol 8 ◽  
pp. 547-560 ◽  
Author(s):  
Zhenbo Wang ◽  
Ke Lu

Gradient nanostructures (GNSs) have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.


Author(s):  
D. N. Braski ◽  
P. D. Goodell ◽  
J. V. Cathcart ◽  
R. H. Kane

It has been known for some time that the addition of small oxide particles to an 80 Ni—20 Cr alloy not only increases its elevated-temperature strength, but also markedly improves its resistance to oxidation. The mechanism by which the oxide dispersoid enhances the oxidation resistance is being studied collaboratively by ORNL and INCO Alloy Products Company.Initial experiments were performed using INCONEL alloy MA754, which is nominally: 78 Ni, 20 Cr, 0.05 C, 0.3 Al, 0.5 Ti, 1.0 Fe, and 0.6 Y2O3 (wt %).Small disks (3 mm diam × 0.38 mm thick) were cut from MA754 plate stock and prepared with two different surface conditions. The first was prepared by mechanically polishing one side of a disk through 0.5 μm diamond on a syntron polisher while the second used an additional sulfuric acid-methanol electropolishing treatment to remove the cold-worked surface layer. Disks having both surface treatments were oxidized in a radiantly heated furnace for 30 s at 1000°C. Three different environments were investigated: hydrogen with nominal dew points of 0°C, —25°C, and —55°C. The oxide particles and films were examined in TEM by using extraction replicas (carbon) and by backpolishing to the oxide/metal interface. The particles were analyzed by EDS and SAD.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
V. N. Filimonenko ◽  
M. H. Richman ◽  
J. Gurland

The high temperatures and pressures that are found in a spark gap during electrical discharging lead to a sharp phase transition and structural transformation in the surface layer of cemented carbides containing WC and cobalt. By means of X-ray diffraction both W2C and a high-temperature monocarbide of tungsten (face-centered cubic) were detected after electro-erosion. The W2C forms as a result of the peritectic reaction, WC → W2C+C. The existence and amount of the phases depend on both the energy of the electro-spark discharge and the cobalt content. In the case of a low-energy discharge (i.e. C=0.01μF, V = 300v), WC(f.c.c.) is generally formed in the surface layer. However, at high energies, (e.g. C=30μF, V = 300v), W2C is formed at the surface in preference to the monocarbide. The phase transformations in the surface layer are retarded by the presence of larger percentages of cobalt.Metallographic examination of the electro-eroded surfaces of cemented carbides was carried out on samples with 5-30% cobalt content. The specimens were first metallographically polished using diamond paste and standard procedures and then subjected to various electrical discharges on a Servomet spark machining device. The samples were then repolished and etched in a 3% NH4OH electrolyte at -0.5 amp/cm2. Two stage plastic-carbon replicas were then made and shadowed with chromium at 27°.


Author(s):  
Z. Horita ◽  
D. J. Smith ◽  
M. Furukawa ◽  
M. Nemoto ◽  
R. Z. Valiev ◽  
...  

It is possible to produce metallic materials with submicrometer-grained (SMG) structures by imposing an intense plastic strain under quasi-hydrostatic pressure. Studies using conventional transmission electron microscopy (CTEM) showed that many grain boundaries in the SMG structures appeared diffuse in nature with poorly defined transition zones between individual grains. The implication of the CTEM observations is that the grain boundaries of the SMG structures are in a high energy state, having non-equilibrium character. It is anticipated that high-resolution electron microscopy (HREM) will serve to reveal a precise nature of the grain boundary structure in SMG materials. A recent study on nanocrystalline Ni and Ni3Al showed lattice distortion and dilatations in the vicinity of the grain boundaries. In this study, HREM observations are undertaken to examine the atomic structure of grain boundaries in an SMG Al-based Al-Mg alloy.An Al-3%Mg solid solution alloy was subjected to torsion straining to produce an equiaxed grain structure with an average grain size of ~0.09 μm.


Sign in / Sign up

Export Citation Format

Share Document