The oxidation of Inconel alloy MA754 at low oxidation potential

Author(s):  
D. N. Braski ◽  
P. D. Goodell ◽  
J. V. Cathcart ◽  
R. H. Kane

It has been known for some time that the addition of small oxide particles to an 80 Ni—20 Cr alloy not only increases its elevated-temperature strength, but also markedly improves its resistance to oxidation. The mechanism by which the oxide dispersoid enhances the oxidation resistance is being studied collaboratively by ORNL and INCO Alloy Products Company.Initial experiments were performed using INCONEL alloy MA754, which is nominally: 78 Ni, 20 Cr, 0.05 C, 0.3 Al, 0.5 Ti, 1.0 Fe, and 0.6 Y2O3 (wt %).Small disks (3 mm diam × 0.38 mm thick) were cut from MA754 plate stock and prepared with two different surface conditions. The first was prepared by mechanically polishing one side of a disk through 0.5 μm diamond on a syntron polisher while the second used an additional sulfuric acid-methanol electropolishing treatment to remove the cold-worked surface layer. Disks having both surface treatments were oxidized in a radiantly heated furnace for 30 s at 1000°C. Three different environments were investigated: hydrogen with nominal dew points of 0°C, —25°C, and —55°C. The oxide particles and films were examined in TEM by using extraction replicas (carbon) and by backpolishing to the oxide/metal interface. The particles were analyzed by EDS and SAD.

Author(s):  
R.C. Dickenson ◽  
K.R. Lawless

In thermal oxidation studies, the structure of the oxide-metal interface and the near-surface region is of great importance. A technique has been developed for constructing cross-sectional samples of oxidized aluminum alloys, which reveal these regions. The specimen preparation procedure is as follows: An ultra-sonic drill is used to cut a 3mm diameter disc from a 1.0mm thick sheet of the material. The disc is mounted on a brass block with low-melting wax, and a 1.0mm hole is drilled in the disc using a #60 drill bit. The drill is positioned so that the edge of the hole is tangent to the center of the disc (Fig. 1) . The disc is removed from the mount and cleaned with acetone to remove any traces of wax. To remove the cold-worked layer from the surface of the hole, the disc is placed in a standard sample holder for a Tenupol electropolisher so that the hole is in the center of the area to be polished.


Alloy Digest ◽  
2009 ◽  
Vol 58 (3) ◽  

Abstract Inconel Alloy N06230 is a Ni-Cr-W alloy with excellent strength and resistance to oxidation at elevated temperatures. This alloy offers good metallurgical stability and is readily fabricated by conventional processes and procedures. This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-667. Producer or source: Special Metals Corporation.


Alloy Digest ◽  
2003 ◽  
Vol 52 (12) ◽  

Abstract Type 309 (UNS S30900) is an austenitic chromium-nickel stainless steel widely used for elevated-temperature services. It has a good combination of oxidation resistance and corrosion-resisting properties. The alloy is essentially nonmagnetic when annealed and become slightly magnetic when cold worked. It is intended primarily for high-temperature applications at 816 deg C (1500 deg F) or higher where resistance to oxidation and/or corrosion is required. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-896. Producer or source: J & L Specialty Steel Inc.


2004 ◽  
Vol 467-470 ◽  
pp. 229-234 ◽  
Author(s):  
Andrey Belyakov ◽  
Yuushi Sakai ◽  
Toru Hara ◽  
Yuuji Kimura ◽  
Kaneaki Tsuzaki

Several Fe – O samples containing different fractions of dispersed oxides were processed by mechanical milling followed by consolidating rolling. The samples were annealed at 1000oC and then compressed to strains of 0.35, 1.2, and 1.9 at an ambient temperature. Dispersed oxides with size of about 20 nm were homogeneously distributed throughout the ferrite matrix and their volume fractions varied from about 0.3% to 2.0%. To study the annealing softening mechanisms, the coldworked specimens were annealed for an hour at 700oC and 800oC. The fine dispersion of oxide particles was very effective to suppress any softening processes. Primary recrystallization fully developed in the samples with volume fraction of dispersed oxides of about 0.3%. Increase in the fraction of dispersed oxides resulted in decrease of the fraction recrystallized. In the samples containing 2.0 vol.% of dispersed oxides, only recovery was the annealing softening process irrespective of the preceding cold strain. The critical volume fraction of dispersed particles for development of the primary recrystallization is considered to range from 0.5 to 2.0%.


1987 ◽  
Vol 66 (8) ◽  
pp. 1380-1385 ◽  
Author(s):  
H. Herø ◽  
I.E. Ruyter ◽  
M.L. Waarli ◽  
G. Hultquist

The purpose of the investigation was to study the effect of water storage on the bond strengths between silanized, silicoated Ag-Pd alloys and veneered composites, in comparison with the bond strengths of systems with conventional retention beads. Furthermore, the mechanism of the bonding was examined. The bond strength of silanized, silicoated dry specimens and similar specimens stored in water was measured by four-point bending. Water storage for 90 days at 37°C reduced the bond strength by approximately 30% to about 15-20 MPa. Mechanical retention beads caused bond strengths of approximately 16-18 MPa which were unaffected by water storage. SEM and microprobe investigations showed that sandblasting with Al2O3 prior to silanization caused substantial numbers of cracks and porosities in the surface layer of the alloy, partly filled with Al2O3. Some particles of silicon oxide in these surface defects were produced by the flame-spraying of the so-called silicoating technique. Further painting of the surface with a silane adhesion primer provided chemical bonding to the composite at the densely spaced Si-O-H-containing silica particles. Many cracks were observed in the interfaces between these particles; thus, water is likely to penetrate the interface with time. The bond strength is most likely reduced by reaction between water and the compositelSi-O structure. The silicon oxide particles are probably attached to the alloy substrate by mechanical retention. Without sandblasting, no bonding was obtained by means of the silicoating technique.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

It is generally accepted that a uniform spatial distribution of fine refractory oxide particles is required in an oxide-dispersion-strengthened metal to provide good elevated-temperature strengths. The presence of these particles stabilizes the cold-worked microstructure by anchoring low-angle cell boundaries and by restricting the motion of dislocations during loading. Such action by the particles must be a function of the interparticle spacing as is proposed by the Orowan model for yield stress. For a given volume percent of oxide in the metal matrix, the interparticle spacing is directly proportional to the particle size. Therefore, particle growth during the processing of oxide-dispersion-strengthened metals increases the interparticle spacing and inherently decreases the strength.


Alloy Digest ◽  
1982 ◽  
Vol 31 (5) ◽  

Abstract AISI Type 446 is a high-chromium (nominally 25%), ferritic, heat-resistant alloy with excellent resistance to oxidation and to various forms of hot corrosion. The alloy is used most commonly for service between 1500 and 2200 F (815 and 1200 C), although its elevated-temperature strength is quite low. Among its many applications are combustion chambers, kiln linings, oil-burner components and annealing boxes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-407. Producer or source: Stainless steel mills.


Author(s):  
V.R. Edigarov

This paper examines a combined friction-electric treatment of surface layers of machine parts made of aluminums alloys. The temperature released during the friction process is the main technological factor of the treatment, and the heat released during the passage of electric current through the local volume of friction-thermal action is an additional heat source. The paper presents the results of studying a surface modification method involving friction-electric treatment of aluminium alloys with reinforcement by aluminium oxide particles under varied technological conditions: density of electric current, pressing force of the tool, shape of the tool working zone and speed of treatment. A hard alloy tool with high temperature resistance was used as a tool for friction-electric treatment. The tool was installed in a mandrel of a special design allowing supply of a modifier representing a mixture of aluminum oxide particles with a surfactant to the treatment zone. Using the friction-electric treatment of the surface layer of samples with reinforcement by aluminum oxide particles it was possible to increase the surface hardness by about 30–40 % and thickness of the hardened layer by 3–5 times due to the local deformation and passage of electric current through the treatment zone, and to improve wear resistance of the surface layer.


1988 ◽  
Vol 142 ◽  
Author(s):  
C. F. Lo ◽  
H. Kamide ◽  
G. Feng ◽  
W. E. Mayo ◽  
S. Weissmann

AbstractAn Inconel Alloy 600 C-ring was subjected to various strain levels and the deformation process was monitored by a Computer Aided Rocking Curve Analyzer (CARCA). A large grain population was sampled, and the calibration curve of average rocking curve halfwidth of the individual grains relating to the nominal strain was established. The strain distribution as a function of the angular position along the peripheral surface layer and layers at different depth distance was obtained. Up to C-ring closure at the nominal strain of 3.3% at the apex, the induced plastic strains were confined to a surface layer of 30–40 gm in depth.The largest strain and strain gradients below the surface occurred at the apex and near apex region. The extent and the spread of microdeformation inhomogeneity increased with applied strain. At ring closure some grains exhibited large plastic strains while others exhibited only small plastic strains or were not affected by the deformation process at all. These experimental results were not in agreement with the current theoretical understanding of the deformation of C-ring since these theories did not take shape changes into account. When such changes were included, good agreement on the angular strain dependence for the apex and near apex region were achieved between experiment and theory. It was concluded that the CARCA X-ray method can be a useful research tool in aiding and guiding mathematical modeling of non-linear inelastic behavior of solids by disclosing important microstructural and micromechanical aspects.


1928 ◽  
Vol 1 (3) ◽  
pp. 465-474
Author(s):  
W. B. Plummer ◽  
D. J. Beaver

Abstract With respect to the results noted herein an the relation of abrasion loss to size of abrasive material, it is regretted that as yet no results have been obtained which cast much light on the reasons for the break in the curves of Figure 1. It is possible, if not probable, that the unexpected phenomena whose existence is indicated by these results may be responsible for the commonly observed discrepancies between laboratory abrasion tests and road tests. It is hoped that further studies may give more useful information on this relation. The abrasion results on aged stocks present several important points. It is, of course, obvious and fully realized that abrasion in use takes place only on the surface layer of a tire tread, but attention has not before been called to the very considerable effect which the aging characteristics of the carbon black used in the stock may have on the abrasion resistance of this surface layer. The present results show that, with two stocks differing only in their carbon black content, the relative abrasion resistance of the surface layers after aging may be in reversed ratio to those of the unaged stocks. This evidently will be a decisive factor in the relative useful life of the tread if the rate of surface aging is greater than the rate of tread wear. Surface conditions or, in other words, the time of storage before use, the daily mileage, existing road and climatic conditions, etc., will determine this relation.


Sign in / Sign up

Export Citation Format

Share Document