scholarly journals Increased levels of serum pigment epithelium-derived factor aggravate proteinuria via induction of podocyte actin rearrangement

2018 ◽  
Vol 51 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Na Huang ◽  
Xuan Zhang ◽  
Youzhao Jiang ◽  
Hao Mei ◽  
Ling Zhang ◽  
...  
2015 ◽  
Vol 129 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Ting He ◽  
Jiongyu Hu ◽  
Guangning Yan ◽  
Lingfei Li ◽  
Dongxia Zhang ◽  
...  

PEDF induces vascular hyperpermeability by targeting the ATGL receptor, causing actin rearrangement and intercellular junctions disruption through activating RhoA. This damage can be arrested by PEDF-mAb or ATGL-shRNA, which may provide new potential therapeutic strategies for hyperpermeability in sepsis.


2018 ◽  
Vol 31 (1A) ◽  
Author(s):  
Emilia Tekely ◽  
Beata Szostakiewicz-Grabek ◽  
Dorota Krasowska ◽  
Grażyna Chodorowska

2018 ◽  
Vol 25 (13) ◽  
pp. 1480-1500 ◽  
Author(s):  
Sho-ichi Yamagishi ◽  
Takanori Matsui

Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the superfamily of serine protease inhibitors, serpins. It was first identified as a neuronal differentiating factor secreted by human retinal pigment epithelial cells, and then found to be the most potent inhibitor of pathological angiogenesis in mammalian eyes. Recently, PEDF has been shown not only to suppress oxidative stress and inflammatory reactions in vascular wall cells, T cells and macrophages, and adipocytes, but also to exert antithrombotic and anti-fibrotic properties, thereby protecting against the development and progression of various cardiometabolic diseases and related complications. Furthermore, accumulating evidence has suggested that circulating PEDF levels may be a biomarker of severity and prognosis of these devastating disorders. Number of subjects with visceral obesity and insulin resistance is increasing, and the metabolic syndrome and its related complications, such as diabetes, nonalcoholic fatty liver disease/non-alcoholic steatohepatits, and atherosclerotic cardiovascular disease are a growing health challenge. Therefore, in this study, we review the pathophysiological role of PEDF in obesity and metabolic disorders, cardiovascular disease, diabetic eye and kidney complications, liver diseases, and reproductive system disorders, and discuss the potential clinical utility of modulating the expression and actions of PEDF for preventing these cardiometabolic disorders. We also refer to the clinical value of PEDF as a biomarker in cardiometabolic complications.


2021 ◽  
Vol 22 (3) ◽  
pp. 1147
Author(s):  
Noy Bagdadi ◽  
Alaa Sawaied ◽  
Ali AbuMadighem ◽  
Eitan Lunenfeld ◽  
Mahmoud Huleihel

Pigment epithelium derived factor (PEDF) is a multifunctional secretory soluble glycoprotein that belongs to the serine protease inhibitor (serpin) family. It was reported to have neurotrophic, anti-angiogenic and anti-tumorigenic activity. Recently, PEDF was found in testicular peritubular cells and it was assumed to be involved in the avascular nature of seminiferous tubules. The aim of this study was to determine the cellular origin, expression levels and target cells of PEDF in testicular tissue of immature and adult mice under physiological conditions, and to explore its possible role in the process of spermatogenesis in vitro. Using immunofluorescence staining, we showed that PEDF was localized in spermatogenic cells at different stages of development as well as in the somatic cells of the testis. Its protein levels in testicular homogenates and Sertoli cells supernatant showed a significant decrease with age. PEDF receptor (PEDF-R) was localized within the seminiferous tubule cells and in the interstitial cells compartment. Its RNA expression levels showed an increase with age until 8 weeks followed by a decrease. RNA levels of PEDF-R showed the opposite trend of the protein. Addition of PEDF to cultures of isolated cells from the seminiferous tubules did not changed their proliferation rate, however, a significant increase was observed in number of meiotic/post meiotic cells at 1000 ng/mL of PEDF; indicating an in vitro differentiation effect. This study may suggest a role for PEDF in the process of spermatogenesis.


2004 ◽  
Vol 131 (2) ◽  
pp. P287-P287
Author(s):  
Shinichi Sakurai ◽  
Nobuo Ohta ◽  
Masaru Aoyagi ◽  
Sanai Sato

Sign in / Sign up

Export Citation Format

Share Document