Effects of water stress and smoke on germination of Mediterranean shrubs with hard or soft coat seeds

Plant Ecology ◽  
2019 ◽  
Vol 220 (4-5) ◽  
pp. 511-521 ◽  
Author(s):  
Daniel Chamorro ◽  
José M. Moreno
1996 ◽  
Vol 20 (3) ◽  
pp. 271-277 ◽  
Author(s):  
M. Lopez-Carbonell ◽  
L. Alegre ◽  
A. Pastor ◽  
E. Prinsen ◽  
H. van Onckelen

Author(s):  
Pedro J. Gómez-Giráldez ◽  
Elisabet Carpintero ◽  
Mario Ramos ◽  
Cristina Aguilar ◽  
María P. González-Dugo

Abstract. Dehesa ecosystem consists of widely-spaced oak trees combined with crops, pasture and Mediterranean shrubs. It is located in the southwest of the Iberian Peninsula, where water scarcity is recurrent, severely affecting the multiple productions and services of the ecosystem. Upscaling in situ Gross Primary Production (GPP) estimates in these areas is challenging for regional and global studies, given the significant spatial variability of plant functional types and the vegetation stresses usually present. The estimation of GPP is often addressed using light use efficiency models (LUE-models). Under soil water deficit conditions, biomass production is reduced below its potential rate. This work investigates the effect of different parameterizations to account for water stress on GPP estimates and their agreement with observations. Ground measurements of GPP are obtained using an Eddy Covariance (EC) system installed over an experimental site located in Córdoba, Spain. GPP is estimated with a LUE-model in the footprint of the EC tower using several approaches: a fixed value taken from previous literature; a fixed value modified by daily weather conditions; and both formulations modified by an additional coefficient to explicitly consider the vegetation water stress. The preliminary results obtained during two hydrological years (2015/2016 and 2016/2017) are compared, focusing on specific wet and dry periods.


HortScience ◽  
2010 ◽  
Vol 45 (11) ◽  
pp. 1681-1689 ◽  
Author(s):  
Julián Miralles-Crespo ◽  
María J. Sánchez-Blanco ◽  
Alejandra Navarro G. ◽  
Juan J. Martínez-Sánchez ◽  
Jose A. Franco L. ◽  
...  

The dendrometer has been proposed as a sensitive plant water indicator based on stem growth. However, studies including dendrometers have been mainly focused on fruit trees and less attention has been paid to ornamental shrubs (small plants). In the study described here, stem dendrometers were used to ascertain whether there is any relationship between water status and dendrometric indices in potted ornamental shrubs (1 to 2 cm diameter). For this purpose, three Mediterranean shrubs (Pittosporum tobira, Callistemon citrinus, and Rhamnus alaternus) were studied under water stress recovery conditions in winter, spring, and early summer. At the end of the experiment, an extreme water stress treatment, which resulted in plant death (August) was also studied. Stem diameter variations [maximum and minimum daily stem values (MXDS and MNDS, respectively), maximum daily shrinkage (MDS), and stem growth rate (SGR)], daily evapotranspiration (daily plant ET), and leaf water potential (Ψleaf) parameters were considered throughout the experiment. A regression analysis between dendrometric indices and daily plant ET showed that MXDS and MNDS were sensitive under water stress recovery conditions, especially in severe environmental conditions (spring and summer). The SGR in C. citrinus, the MDS in P. tobira, and both indices in R. alaternus were seen to be sensitive during the stress to death period. Although more studies are needed, the results confirm that the use of dendrometers in small plants may be useful to provide continuous and automated registers of the plant water status under different substrate water content and climatic conditions. However, the response of these indices may imply moderate water stress.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Davie Mayeso Kadyampakeni ◽  
Kelly T. Morgan ◽  
Mongi Zekri ◽  
Rhuanito Ferrarezi ◽  
Arnold Schumann ◽  
...  

Water is a limiting factor in Florida citrus production during the majority of the year because of the low water holding capacity of sandy soils resulting from low clay and the non-uniform distribution of the rainfall. In Florida, the major portion of rainfall comes in June through September. However, rainfall is scarce during the dry period from February through May, which coincides with the critical stages of bloom, leaf expansion, fruit set, and fruit enlargement. Irrigation is practiced to provide water when rainfall is not sufficient or timely to meet water needs. Proper irrigation scheduling is the application of water to crops only when needed and only in the amounts needed; that is, determining when to irrigate and how much water to apply. With proper irrigation scheduling, yield will not be limited by water stress. With citrus greening (HLB), irrigation scheduling is becoming more important and critical and growers cannot afford water stress or water excess. Any degree of water stress or imbalance can produce a deleterious change in physiological activity of growth and production of citrus trees.  The number of fruit, fruit size, and tree canopy are reduced and premature fruit drop is increased with water stress.  Extension growth in shoots and roots and leaf expansion are all negatively impacted by water stress. Other benefits of proper irrigation scheduling include reduced loss of nutrients from leaching as a result of excess water applications and reduced pollution of groundwater or surface waters from the leaching of nutrients. Recent studies have shown that for HLB-affected trees, irrigation frequency should increase and irrigation amounts should decrease to minimize water stress from drought stress or water excess, while ensuring optimal water availability in the rootzone at all times.


Sign in / Sign up

Export Citation Format

Share Document