Modelling of ultra high frequency television band radio signal propagation in underground mine environment

2018 ◽  
Vol 25 (4) ◽  
pp. 2117-2128 ◽  
Author(s):  
Dejan S. Vujić ◽  
Jelena D. Ćertić
2020 ◽  
Vol 20 (16) ◽  
pp. 9417-9426
Author(s):  
Ahmad Darwish ◽  
Shady S. Refaat ◽  
Haitham Abu-Rub ◽  
Hamid A. Toliyat

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5113 ◽  
Author(s):  
Chandra Prakash Beura ◽  
Michael Beltle ◽  
Stefan Tenbohlen

Ultra-high frequency (UHF) partial discharge (PD) measurements in power transformers are becoming popular because of the advantages of the method. Therefore, it is necessary to improve the basic understanding of the propagation of signals inside the transformer tank and the factors that influence the sensitivity of the measurement. Since the winding represents a major obstacle to the propagation of the UHF signals, it is necessary to study the effect of winding design on signal propagation. Previous research activities have studied these effects using simplified models, and it is essential to consider the complexity of propagation in a complete transformer tank. Additionally, the quality of UHF PD measurements depends, to a large extent, on the sensitivity of the UHF sensors. In this contribution, a simulation model consisting of a simple, grounded enclosure with multiple winding designs is used to study the propagation characteristics of UHF signals when an artificial PD source is placed inside the winding. After analysis of the results, the winding designs are incorporated in an existing and validated simulation model of a 420 kV power transformer and analyzed to observe the influence in a more complex structure. Two commonly used sensor designs are also used in the simulation model to receive the signals. In all cases, the propagation and signal characteristics are analyzed and compared to determine the influence of the winding and sensor design on the UHF signals. It is found that the level of detail of winding design has a significant impact on the propagation characteristics. However, the attenuation characteristics of the UHF signals received by the two sensor designs are similar, with the electric field distribution around the sensor being the key difference.


2014 ◽  
Author(s):  
Nicholas A. Bishop ◽  
Mohammod Ali ◽  
Jason Miller ◽  
David L. Zeppettella ◽  
William Baron ◽  
...  

2017 ◽  
Author(s):  
Thong Dao ◽  
Frank McGroarty ◽  
Andrew Urquhart

2020 ◽  
Vol 4 (41) ◽  
pp. 35-43
Author(s):  
ALEKSEY A. VASIL’EV ◽  
◽  
ALEKSEY N. VASIL’EV ◽  
DMITRIY BUDNIKOV ◽  
ANTON SHARKO

The use of electrophysical influences for pre-sowing treatment of seeds is an effective way to increase their sowing quality. The use of these methods is limited by the fact that their implementation requires new technological equipment in grain processing lines. This problem is solved more easily when pre-sowing processing is performed using installations for active ventilation and grain drying. (Research purpose) The research purpose is in determining the possibility of using active ventilation units and ultra-high-frequency convective grain dryers for pre-sowing grain processing and to evaluating the effectiveness of such processing using computer modeling. (Materials and methods) It is necessary to ensure the uniformity of processing with external influence the seeds placed in a dense layer. Authors carried out pre-sowing treatment of seeds on real installations. Treated seeds were sown in experimental plots and the results of treatment were evaluated. (Results and discussion) The article presents graphs of changes in grain temperature and humidity during processing. To check the feasibility of pre-sowing treatment, authors performed modeling of air-heat and ultra-high-frequency convective seed treatment processes. Based on the results of field experiments, air-heat treatment stimulates the development of secondary plant roots, contributes to an intensive increase in the green mass of plants; ultra-high-frequency convective seed treatment allows increasing the number of productive stems in plants, the number of ears in one plant. (Conclusions) Technological equipment designed for drying and active ventilation of grain can be effectively used for pre-sowing seed processing. In the course of field experiments, it was revealed the possibility of controlling the structure of the crop using different types of external influence on seeds during their pre-sowing processing.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ankita RayChowdhury ◽  
Ankita Pramanik ◽  
Gopal Chandra Roy

AbstractThis paper presents an approach to access real time data from underground mine. Two advance technologies are presented that can improve the adverse environmental effect of underground mine. Visible light communication (VLC) technology is incorporated to estimate the location of miners inside the mine. The distribution of signal to noise ratio (SNR) for VLC system is also studied. In the second part of the paper, long range (LoRa) technology is introduced for transmitting underground information to above the surface control room. This paper also includes details of the LoRa technology, and presents comparison of ranges with existing above the surface technologies.


Sign in / Sign up

Export Citation Format

Share Document