In vitro gastro-intestinal method for the assessment of heavy metal bioavailability in contaminated soils

2010 ◽  
Vol 18 (4) ◽  
pp. 620-628 ◽  
Author(s):  
Cennet Karadaş ◽  
Derya Kara
2010 ◽  
Vol 217 (1-4) ◽  
pp. 333-346 ◽  
Author(s):  
Thomas Lambrechts ◽  
Eléonore Couder ◽  
M. Pilar Bernal ◽  
Ángel Faz ◽  
Anne Iserentant ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 25-35
Author(s):  
Periyasamy Dhevagi ◽  
◽  
Ambikapathi Ramya ◽  
Murugaiyan Sindhuja ◽  
Sengottiyan Priyatharshini ◽  
...  

Food crops grown in contaminated soils have a greater accumulation of heavy metals and the consumption of food crops grown in the contaminated soils are the source of metals that enters into the human body. Rice being a major food crop, the presence of heavy metals should be monitored regularly for reducing health risk. The analysis of total heavy metal always overestimates the content which leads to misinterpretation of results; however, bioaccessible heavy metal analysis projects the actual health risk. Hence, the present study aims to assess the bioavailable form of heavy metals in rice. The rice samples were collected from 20 different places and used for the inherent and bioavailable metal estimation. In vitro simulated digestion method was applied for bioaccessible metal analysis. Metal concentration in polished rice ranged from 0.10 to 0.82, 0.10 to 1.07, 0.11 to 0.56 and 0.23 to 1.09 mg kg-1 for Lead (Pb), Nickel (Ni), Cadmium (Cd) and Chromium (Cr), respectively. Twenty five percent of the samples recorded less than 0.028, 0.01, 0.01, and 0.03 mg kg-1 of bioaccessible Pb, Ni, Cd, and Cr, respectively. A significant negative correlation was observed between total metal concentration and bioaccessibility percentage. Targeted Hazard Quotient (THQ) of all the metals were less than one for adults indicating that there were no health risks, which undoubtedly reveals the importance of bioaccessible metal analysis. Hence, regular monitoring of heavy metals is essential to reduce the intensive accumulation in the human food chain. Also, the present study has opened up a wide scope on human health risk assessment using an in vitro digestion model.


2021 ◽  
Vol 23 (1) ◽  
pp. 214
Author(s):  
Daria Chlebek ◽  
Tomasz Płociniczak ◽  
Sara Gobetti ◽  
Agata Kumor ◽  
Katarzyna Hupert-Kocurek ◽  
...  

The Pseudomonas qingdaonensis ZCR6 strain, isolated from the rhizosphere of Zea mays growing in soil co-contaminated with hydrocarbons and heavy metals, was investigated for its plant growth promotion, hydrocarbon degradation, and heavy metal resistance. In vitro bioassays confirmed all of the abovementioned properties. ZCR6 was able to produce indole acetic acid (IAA), siderophores, and ammonia, solubilized Ca3(PO4)2, and showed surface active properties and activity of cellulase and very high activity of 1-aminocyclopropane-1-carboxylic acid deaminase (297 nmol α-ketobutyrate mg−1 h−1). The strain degraded petroleum hydrocarbons (76.52% of the initial hydrocarbon content was degraded) and was resistant to Cd, Zn, and Cu (minimal inhibitory concentrations reached 5, 15, and 10 mM metal, respectively). The genome of the ZCR6 strain consisted of 5,507,067 bp, and a total of 5055 genes were annotated, of which 4943 were protein-coding sequences. Annotation revealed the presence of genes associated with nitrogen fixation, phosphate solubilization, sulfur metabolism, siderophore biosynthesis and uptake, synthesis of IAA, ethylene modulation, heavy metal resistance, exopolysaccharide biosynthesis, and organic compound degradation. Complete characteristics of the ZCR6 strain showed its potential multiway properties for enhancing the phytoremediation of co-contaminated soils. To our knowledge, this is the first analysis of the biotechnological potential of the species P. qingdaonensis.


2017 ◽  
pp. 599-606 ◽  
Author(s):  
L. Pistelli ◽  
F. D’Angiolillo ◽  
M. Bortolazzo ◽  
E. Morelli ◽  
B. Basso

2018 ◽  
Vol 26 (3) ◽  
pp. 316-332 ◽  
Author(s):  
Katarzyna Hrynkiewicz ◽  
Michał Złoch ◽  
Tomasz Kowalkowski ◽  
Christel Baum ◽  
Bogusław Buszewski

Phytoremediation is the bioremediation of contaminated soils and waters by using plants and their associated microorganisms. Phytoremediation of heavy metal (HM)-contaminated soils is based on immobilization of metals in rhizosphere soil and roots (phytostabilization) and on mobilization, uptake, and transfer of metals into the aboveground plant organs (phytoextraction). In this review, we aimed to (i) discuss the fundamentals, potential, and limitations of plant-associated microorganisms (bacteria and fungi) to increase the efficiency of phytostabilization and phytoextraction of HM-contaminated soils and (ii) describe promising developments and future challenges to expanding their use. Controlled inoculations of plants with growth-promoting microorganisms can significantly increase their root growth, biomass production, and stress tolerance in HM-contaminated soils. A serious weakness of phytoremediation in general is the usually high and difficult to measure expenditure of time for successful completion. The bioconcentration factors (BCFs) and the translocation factors (TFs) are among the most important measures of the efficiency of phytoremediation. However, an overview of BCFs and TFs for a variety of combinations of plants with defined associated microorganisms is lacking. Moreover, the joint evaluation of model systems would allow an improved cost–benefit calculation of microbial inoculations in phytoremediation systems. For this purpose, the use of in vitro model systems is considered to be preferable to field experiments due to the savings in time and costs and the control of environmental conditions. However, the transferability of in vitro data to field conditions is limited. Currently, attention is focused on the use of artificial neural networks, mainly to avoid formulating any complex relationships between soil inputs (e.g., soil amendments, pH, carbon, nitrogen and hydrogen contents, electrical conductivity, and dissolved organic carbon) and design outputs (e.g., BCFs and TFs) beforehand and because of the high accuracy of the obtained models. The controlled use of associated microorganisms to increase the efficiency of phytoremediation of HM, mainly using combinations of Brassica and Salix spp. and rhizobacteria at contaminated soils, is a promising possibility. A crucial future challenge for the expansion of their use will be to develop well-defined cost- and time-efficient tools for a credible prediction of their effectiveness on contaminated field sites.


2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


Author(s):  
Yujuan Gao ◽  
Jianli Jia ◽  
Beidou Xi ◽  
Dongyu Cui ◽  
Wenbing Tan

The heavy metal pollution induced by agricultural land use change has attracted great attention. In this study, the divergent response of bioavailability of heavy metals in rhizosphere soil to different...


Sign in / Sign up

Export Citation Format

Share Document