The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas

2016 ◽  
Vol 24 (3) ◽  
pp. 2558-2571 ◽  
Author(s):  
Ling Xiao ◽  
Dongsheng Guan ◽  
M. R. Peart ◽  
Yujuan Chen ◽  
Qiqi Li
2015 ◽  
Vol 43 (1) ◽  
pp. 7-14 ◽  
Author(s):  
György Heltai ◽  
Ilona Fekete ◽  
Gábor Halász ◽  
Katalin Kovács ◽  
Márk Horváth ◽  
...  

Abstract For the characterisation of the environmental mobility of heavy metal contamination in aquatic sediments, the EU Bureau of Reference has proposed a fractionation by sequential extraction procedure. For its validation, the CRM-701 sample is available containing Cd, Cr, Cu, Ni, Pb, and Zn. In this paper, the matrix-matched calibration problems are presented. A multi-elemental inductively coupled plasma-optical emission technique is employed for the detection of heavy metals in the extracts. It was established that the sensitivities are strongly influenced by the extractants, which causes significant matrix effects: the sensitivities are strongly influenced by the solvents applied in extraction steps; the summarised recoveries show an acceptable agreement with the certified values; however, in the individual extraction steps for certain elements significant differences may occur due to the neglected interferences. Therefore, further optimisation is required utilising the flexible line selection possibility offered by the HORIBA Jobin Yvon ACTIVA-M instrument.


2009 ◽  
Vol 163 (2-3) ◽  
pp. 1157-1164 ◽  
Author(s):  
Muhammad K. Jamali ◽  
Tasneem G. Kazi ◽  
Muhammad B. Arain ◽  
Hassan I. Afridi ◽  
Nusrat Jalbani ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Chen-Yao Chu ◽  
Tzu-Hsing Ko

Heavy metal-contaminated soils were leached with various acid reagents, and a series of treatments was assessed to understand soil fertility after acid leaching. Aqua regia digestion and a five-step sequential extraction procedure were applied to determine heavy metal distribution. The average total concentrations of Zn, Cd, Cu, and Pb for contaminated soil were 1334, 25, 263, and 525 mg·kg−1 based on the ICP/AES quantitative analysis. Other than Pb extracted by H2SO4, over 50% removal efficiency of other heavy metals was achieved. A five-step sequential extraction revealed that the bound-to-carbonate and bound-to-Fe-Mn oxides were the major forms of the heavy metals in the soil. The addition of organic manure considerably promoted soil fertility and increased soil pH after acid leaching. Seed germination experiments demonstrated that after acid leaching, the soil distinctly inhibited plant growth and the addition of manure enhanced seed germination rate from 35% to 84%. Furthermore, the procedure of soil turnover after acid leaching and manure addition greatly increased seed germination rate by 61% and shortened the initial germination time. Seed germination in untreated soil was superior to that in acid-leached soil, illustrating that the phytotoxic effect of acid leaching is more serious than that of heavy metals.


2021 ◽  
Vol 67 (No. 1) ◽  
pp. 55-60
Author(s):  
Xian Xiao ◽  
Yan Zhu ◽  
Yuexiang Gao ◽  
Jing Fu ◽  
Yuan Zhao ◽  
...  

To investigate the effect of microbial inoculum on soil heavy metal immobilisation, pot experiments were conducted with paddy soils contaminated by cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg), respectively. The results showed that the inoculation of Rhodopseudomonas palustris was more effective in the immobilisation of Pb and Cd in soils than the composite of R. palustris and Bacillus subtilis. Interestingly, a lower dosage of inoculum immobilised significantly more heavy metals than the higher dosage, potentially due to the competition of bacteria with limited nutrients. The heavy metal contents in rice grains also supported this finding, as less Pb and Cd were accumulated under the lower dosage. However, there were limited effects of microbial inoculations on the immobilisation of Hg and As. In general, our study indicated the effectiveness of R. palustris in immobilising Pb and Cd in soils and highlighted the importance of determining the optimal dosage of inoculum in bioremediation.  


Sign in / Sign up

Export Citation Format

Share Document