Reducing greenhouse gas emissions: a duopoly market pricing competition and cooperation under the carbon emissions cap

2017 ◽  
Vol 26 (17) ◽  
pp. 16847-16854 ◽  
Author(s):  
Ming Jian ◽  
Hua He ◽  
Changsong Ma ◽  
Yan Wu ◽  
Hao Yang
2021 ◽  
Vol 17 (1) ◽  
pp. 1-16
Author(s):  
Asim Hasan ◽  
Rahil Akhtar Usmani

Rising greenhouse gas emissions is an important issue of the current time. India’s massive greenhouse gas emissions is ranked third globally. The escalating energy demand in the country has opened the gateway for further increase in emissions. Recent studies suggest strong nexus between energy consumption, economic growth, and carbon emissions. This study has the objective to empirically test the aforementioned interdependencies. The co-integration test and multivariate vector error correction model (VECM) are used for the analysis and the Granger Causality test is used to establish the direction of causality. The time-series data for the period of 1971–2011 is used for the analysis. The results of the study confirm strong co-integration between variables. The causality results show that economic growth exerts a causal influence on carbon emissions, energy consumption exerts a causal influence on economic growth, and carbon emissions exert a causal influence on economic growth. Based on the results, the study suggests a policy that focuses on energy conservation and gradual replacement of fossil fuels with renewable energy sources, which would be beneficial for the environment and the society.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2753
Author(s):  
Rok Gomilšek ◽  
Lidija Čuček ◽  
Marko Homšak ◽  
Raymond R. Tan ◽  
Zdravko Kravanja

The production of primary aluminum is an energy-intensive industry which produces large amounts of direct and indirect greenhouse gas emissions, especially from electricity consumption. Carbon Emissions Constrained Energy Planning proved to be an efficient tool for reducing energy-related greenhouse gas emissions. This study focuses on energy planning constrained by CO2 emissions and determines the required amount of CO2 emissions from electricity sources in order to meet specified CO2 emission benchmark. The study is demonstrated on and applied to specific aluminum products, aluminum slugs and aluminum evaporator panels. Three different approaches of energy planning are considered: (i) an insight-based, graphical targeting approach, (ii) an algebraic targeting approach of cascade analysis, and (iii) an optimization-based approach, using a transportation model. The results of the three approaches show that approximately 2.15 MWh of fossil energy source should be replaced with a zero-carbon or 2.22 MWh with a low-carbon energy source to satisfy the benchmark of CO2 emissions to produce 1 t of aluminum slug; however, this substitution results in higher costs. This study is the first of its kind demonstrated on and applied to specific aluminum products, and represents a step forward in the development of more sustainable practices in this field.


Buildings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 227 ◽  
Author(s):  
Udara Willhelm Abeydeera ◽  
Karunasena

The need to mitigate climate change has become a major global concern, and greenhouse gas emissions are a major cause of global climate change. Therefore, the need to curb greenhouse gas emissions has been well recognized by global researchers, policymakers and academics. Carbon emissions of hotel operations have seized the attention of global researchers. However, carbon emissions of the hotels in developing countries remain to be a less explored domain. Therefore, carbon emissions of Sri Lankan hotels were explored using a case study approach. Five hotels in the Colombo suburb were explored, which revealed that each hotel released more than 7000 tons of carbon annually. Results further indicated the use of purchased electricity as the dominant source of carbon emissions. Emissions caused by transport activities were not included in the calculations due to the unavailability of data. Recommendations were made to overcome the issues identified during data collection as well as to reduce the carbon emissions from hotel operations. Wider adoption of the methodology used in this research will benefit the hotels to keep track of the carbon emissions using a systematic approach.


2019 ◽  
Vol 11 (18) ◽  
pp. 5027 ◽  
Author(s):  
Shen ◽  
Shen ◽  
Yang

The increase in carbon emissions is considered one of the major causes of global warming and climate change. To reduce the potential environmental and economic threat from such greenhouse gas emissions, governments must formulate policies related to carbon emissions. Most economists favor the carbon tax as an approach to reduce greenhouse gas emissions. This market-based approach is expected to inevitably affect enterprises’ operating activities such as production, inventory, and equipment investment. Therefore, in this study, we investigate a production inventory model for deteriorating items under a carbon tax policy and collaborative preservation technology investment from the perspective of supply chain integration. Our main purpose is to determine the optimal production, delivery, ordering, and investment policies for the buyer and vendor that maximize the joint total profit per unit time in consideration of the carbon tax policy. We present several numerical examples to demonstrate the solution procedures, and we conduct sensitivity analyses of the optimal solutions with respect to major parameters for identifying several managerial implications that provide a useful decision tool for the relevant managers. We hope that the study results assist government organizations in selecting a more appropriate carbon emissions policy for the carbon reduction trend.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 85 ◽  
Author(s):  
Heena Panchasara ◽  
Nahidul Hoque Samrat ◽  
Nahina Islam

Agriculture is an important source of greenhouse gas emissions. It is one of the economic sectors that impacts both directly and indirectly towards climate change which contributes to greenhouse gas emissions. There has been a continuous trend of agricultural greenhouse gas emissions reduction technologies, but any step taken in this direction must not negatively affect farm productivity and economics. For the agriculture sector to achieve reduced GHG emission, climate-smart activities and improved food security will be needed for this sector to become a climate-smart landscape. Climate-smart technologies are effective at targeting inputs to the fields, helping to lower greenhouse gas emissions. This article explores the key sources of carbon emissions within the agriculture sector and reviews efficient ways to GHG emission via Smart Farming technology. Based on the public archive GHG datasets, we have found that livestock farming is the largest GHG emission sector among other agricultural sectors and responsible for 70% of the total emission. Besides, we also show that Queensland is the largest agricultural GHG contributor compared to other states and territories. The article also captures any possible sources within smart farming that may contribute to carbon emissions and suggest ways to reduce GHG emissions. Besides, an Australian-based best management practice approach is discussed to review the emissions reduction strategy based on climate-specific technology to help the farmers and other stakeholders take environmentally-friendly agricultural decisions.


2021 ◽  
Author(s):  
Bosede Ngozi ADELEYE ◽  
Aviral Kumar Tiwari ◽  
Muhammed Ibrahim SHAH ◽  
Saif Ullah

Abstract The concentration of greenhouse gas emissions is considered to increase, and this can undermine the access to basic resources that are necessary for leading a healthy life such as access to food, water, health and environment. Environmental health is closely linked to human health and the world is witnessing an exponential increase in the trend of the greenhouse gas emissions which pose significant threat to both the environment and human health. Hence, this study contributes to the health-environment discourse and uses an unbalanced panel data on 46 European countries from 2005 to 2015 to investigate the impact of carbon emissions and non-renewable energy on infant and under-5 mortality rates. Consistent findings from static and dynamic analyses reveal that: (1) carbon emissions exhibit mortality-inducing properties; (2) non-renewable energy show mortality-reducing properties; (3) persistency in mortality rates exist; (4) the exacerbating (reducing) impact of emissions (non-renewable energy) dwindles (increases in absolute values) at higher distributions of mortality rates; and (5) Euro Union countries show lower mortality rates relative to non-Euro Union members. Policy recommendations are discussed.JEL Classification: I00, I10, I15, I18, I19


Sign in / Sign up

Export Citation Format

Share Document