Hydrothermal carbonization of arecanut husk biomass: fuel properties and sorption of metals

2018 ◽  
Vol 26 (4) ◽  
pp. 3751-3761 ◽  
Author(s):  
Shalini Ramesh ◽  
Pugalendhi Sundararaju ◽  
Kamaludeen Sara Parwin Banu ◽  
Subburamu Karthikeyan ◽  
Uma Doraiswamy ◽  
...  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Ren Tu ◽  
Yan Sun ◽  
Yujian Wu ◽  
Xudong Fan ◽  
Jiamin Wang ◽  
...  

Abstract Background Biomass fuel has been used to supply heat or crude materials in industry to replace the traditional fossil fuel which was one of the chief causes of climate warming. However, the large-scale utilization of biomass fuel was restricted due to the low density and high hydrophilicity of biomass, which causes the problem of transportation and storage. Therefore, pelletization of biomass was used to improve its fuel density. At present, the biomass pellet was widely used to supply heat, gas or electricity generation via gasification, which supplied clean and sustainable energy for industry. However, the energy consumption during pelletization and high hydrophilicity of pellets were still the problem for the large-scale application of biomass pellet. In this study, hydrothermal carbonization and surfactant played the role of permeation, adsorption and wetting in the solution, which was expected to improve the fuel properties and pelletization effectivity of corn stover. Results In the article, surfactant (PEG400, Span80, SDBS) was chosen to be combined with wet torrefaction to overcome the drawbacks and improve the pelletization and combustion properties of Corn stover (CS). Especially, hydrothermal carbonization (HTC) combined with surfactant improves the yield of solid products and reduces the ash content of solid product, which was beneficial for reducing the ashes of furnace during gasification. Meanwhile, surfactant promotes the formation of pseudo-lignin and the absorption for oil with low O and high C during HTC, which improves the energy density of solid product. Furthermore, the oil in solid product plays the role of lubricant and binder, which reduces the negative effect of high energy consumption, low bulk density and weak pellets strength caused by HTC during pelletization. HTC combined with surfactant improved the hydrophobicity of pellet as well as grindability due to the modification of solid product. Moreover, surfactant combined with HTC improved the combustion characteristic of solid product such as ignition and burning temperature as well as kinetic parameters due to the bio-oil absorbed and the improvement of surface and porosity. Conclusions The study supplied a new, less-energy intensive and effective method to improve the pelletization and combustion properties of corn stover via hydrothermal carbonization combined with surfactant, and provided a promising alternative fuel from corn stover .


2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2271
Author(s):  
Pretom Saha ◽  
Nepu Saha ◽  
Shanta Mazumder ◽  
M. Toufiq Reza

Co-hydrothermal carbonization (Co-HTC) is an emerging technology for processing multiple waste streams together to improve their fuel properties in the solid product, known as hydrochar, compared to the hydrothermal carbonization (HTC) of those individual streams. Sulfur is considered one of the most toxic contaminants in solid fuel and the combustion of this sulfur results in the emission of SOx. It was reported in the literature that, besides the fuel properties, Co-HTC reduced the total sulfur content in the hydrochar phase significantly. However, the transformation of different forms of sulfur has not yet been studied. Therefore, this study investigated the transformation of different forms of sulfur under the Co-HTC treatment. In the study, the Co-HTC of food waste (FW) and two types of coal wastes (middle bottom (CW1) and 4 top (CW2)) were conducted at 180 °C, 230 °C and 280 °C for 30 min. Different forms of sulfur were measured by using elemental analysis (total sulfur), and a wet chemical method (sulfate sulfur and pyritic sulfur). The organic sulfur was measured by the difference method. The results showed that a maximum of 49% and 65% decrease in total sulfur was achieved for CW1FW and CW2FW, respectively, at 230 °C. Similar to the total sulfur, the organic sulfur was also decreased about 85% and 75% for CW1FW and CW2FW, respectively. Based on these results, a sulfur transformation mechanism under Co-HTC treatment was proposed.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2058 ◽  
Author(s):  
Mateusz Jackowski ◽  
Lukasz Niedzwiecki ◽  
Magdalena Lech ◽  
Mateusz Wnukowski ◽  
Amit Arora ◽  
...  

Steady consumption of beer results in a steady output of residues, i.e., brewer’s spent grain (BSG). Its valorization, using hydrothermal carbonization (HTC) seems sensible. However, a significant knowledge gap regarding the variability of this residue and its influence on the valorization process and its potential use in biorefineries exists. This study attempted to fill this gap by characterization of BSG in conjunction with the main product (beer), taking into accounts details of the brewing process. Moreover, different methods to assess the performance of HTC were investigated. Overall, the differences in terms of the fuel properties of both types of spent grain were much less stark, in comparison to the differences between the respective beers. The use of HTC as a pretreatment of BSG for subsequent use as a biorefinery feedstock can be considered beneficial. HTC was helpful in uniformization and improvement of the fuel properties. A significant decrease in the oxygen content and O/C ratio and improved grindability was achieved. The Weber method proved to be feasible for HTC productivity assessment for commercial installations, giving satisfactory results for most of the cases, contrary to traditional ash tracer method, which resulted in significant overestimations of the mass yield.


2017 ◽  
Vol 31 (11) ◽  
pp. 12200-12208 ◽  
Author(s):  
Tengfei Wang ◽  
Yunbo Zhai ◽  
Yun Zhu ◽  
Chuan Peng ◽  
Bibo Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document