Effects of different types of extracellular polysaccharides isolated from cyanobacterial blooms on the colony formation of unicellular Microcystis aeruginosa

2018 ◽  
Vol 26 (4) ◽  
pp. 3741-3750 ◽  
Author(s):  
Ken Omori ◽  
Tania Datta ◽  
Yoshimasa Amano ◽  
Motoi Machida
2013 ◽  
Vol 67 (4) ◽  
pp. 803-809 ◽  
Author(s):  
Xiang-dong Bi ◽  
Shu-lin Zhang ◽  
Wei Dai ◽  
Ke-zhing Xing ◽  
Fan Yang

To investigate the effects of lead(II) on the production of extracellular polysaccharides (EPS), including bound extracellular polysaccharides (bEPS) and soluble extracellular polysaccharides (sEPS), and the colony formation of Microcystis aeruginosa, cultures of M. aeruginosa were exposed to four concentrations (5.0, 10.0, 20.0 and 40.0 mg/L) of lead(II) for 10 d under controlled laboratory conditions. The results showed that 5.0 and 10.0 mg/L lead(II) stimulated M. aeruginosa growth throughout the experiment while 20.0 and 40.0 mg/L lead(II) inhibited M. aeruginosa growth in the first 2 d exposure and then stimulated it. As compared to the control group, significant increases in the bEPS and sEPS production were observed in 20.0 and 40.0 mg/L lead(II) treatments (P < 0.05). Large colony formations were not observed throughout the experiment. However, four tested concentrations of lead(II) could significantly promote the formation of small and middle colonies after 10 d exposure (P < 0.05), and 40.0 mg/L lead(II) had the best stimulatory effect. Lead(II) could stimulate bEPS production, which conversely promoted colony formation, suggesting that heavy metals might be contributing to the bloom-forming of M. aeruginosa in natural conditions.


Author(s):  
Kai Wei ◽  
Yoshimasa Amano ◽  
Motoi Machida

On the surface of Microcystis cells, there is a carbohydrate called extracellular polysaccharides (EPS) playing a significant role in the colony formation of Microcystis. EPS consists of tightly cell-bound EPS (TB-EPS), and both of these substances are considered to be strongly related to the colony formation and buoyancy of Microcystis. In this study, Microcystis aeruginosa (strain: NIES-843) was used to examine the effects of EPS, TB-EPS, and divalent metal cations such as calcium and magnesium on the buoyancy and colony formation of M. aeruginosa NIES-843. Under various light conditions, the addition of TB-EPS into the culture medium induced M. aeruginosa NIES-843 to obtain high buoyancy at concentrations of Ca2+ and Mg2+ concentrations of 10 mg/L and 30 mg/L, respectively. Under the absence of light, the addition of EPS could lead M. aeruginosa to form a colony and obtain buoyancy, and the addition of TB-EPS could not significantly change the buoyancy of M. aeruginosa NIES-843. The colony size analysis showed that at the same cationic concentration, the addition of TB-EPS could induce M. aeruginosa to form the largest colony and present strong buoyancy. This study suggested that temperature and illumination are conducive to colony formation and present higher buoyancy of M. aeruginosa.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3013
Author(s):  
Larissa Souza Passos ◽  
Éryka Costa Almeida ◽  
Claudio Martin Pereira de Pereira ◽  
Alessandro Alberto Casazza ◽  
Attilio Converti ◽  
...  

Cyanobacterial blooms and strains absorb carbon dioxide, drawing attention to its use as feed for animals and renewable energy sources. However, cyanobacteria can produce toxins and have a low heating value. Herein, we studied a cyanobacterial strain harvested during a bloom event and analyzed it to use as animal feed and a source of energy supply. The thermal properties and the contents of total nitrogen, protein, carbohydrate, fatty acids, lipid, and the presence of cyanotoxins were investigated in the Microcystis aeruginosa LTPNA 01 strain and in a bloom material. Microcystins (hepatotoxins) were not detected in this strain nor in the bloom material by liquid chromatography coupled to mass spectrometry. Thermogravimetric analysis showed that degradation reactions (devolatilization) initiated at around 180 °C, dropping from approximately 90% to 20% of the samples’ mass. Our work showed that despite presenting a low heating value, both biomass and non-toxic M. aeruginosa LTPNA 01 could be used as energy sources either by burning or producing biofuels. Both can be considered a protein and carbohydrate source similar to some microalgae species as well as biomass fuel. It could also be used as additive for animal feed; however, its safety and potential adverse health effects should be further investigated.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1831
Author(s):  
Natalia Herrera ◽  
Fernando Echeverri

Although several theories have been postulated to explain cyanobacterial blooms, their biochemical origin has not yet been found. In this work, we explore the existence of bacterial communication, called quorum sensing, in Microcystis aeruginosa and Cylindrospermopsis raciborskii. Thus, the application of several known acylhomoserine lactones to cultures of both cyanobacteria causes profound metabolic. At 72 h post-application, some of them produced substantial increases in cell proliferation, while others were inhibitors. There was a correlation with colony-forming activity for most of them. According to ELISA analysis, the microcystin levels were increased with some lactones. However, there was a clear difference between M. aeruginosa and C. raciborskii culture since, in the first one, there was an inducing effect on cell proliferation, while in C. raciborskii, the effects were minor. Besides, there were compound inhibitors and inducers of microcystins production in M. aeruginosa, but almost all compounds were only inducers of saxitoxin production in C. raciborskii. Moreover, each lactone appears to be involved in a specific quorum sensing process. From these results, the formation of cyanobacterial blooms in dams and reservoirs could be explained since lactones may come from cyanobacteria and other sources as bacterial microflora-associated or exogenous compounds structurally unrelated to lactones, such as drugs, industrial effluents, and agrochemicals.


2013 ◽  
Vol 10 (12) ◽  
pp. 8139-8157 ◽  
Author(s):  
M. W. Matthews ◽  
S. Bernard

Abstract. A two-layered sphere model is used to investigate the impact of gas vacuoles on the inherent optical properties (IOPs) of the cyanophyte Microcystis aeruginosa. Enclosing a vacuole-like particle within a chromatoplasm shell layer significantly altered spectral scattering and increased backscattering. The two-layered sphere model reproduced features in the spectral attenuation and volume scattering function (VSF) that have previously been attributed to gas vacuoles. This suggests the model is good at least as a first approximation for investigating how gas vacuoles alter the IOPs. Measured Rrs was used to provide a range of values for the central value of the real refractive index, 1 + ε, for the shell layer using measured IOPs and a radiative transfer model. Sufficient optical closure was obtained for 1 + ε between 1.1 and 1.14, which had corresponding Chl a-specific phytoplankton backscattering, bbφ*, between 3.9 and 7.2 × 10−3 m2 mg−1 at 510 nm. The bbφ* values are in close agreement with the literature and in situ particulate backscattering measurements. Rrs simulated for a population of vacuolate cells was greatly enlarged relative to a homogeneous population. A sensitivity analysis of empirical algorithms for estimating Chl a in eutrophic/hypertrophic waters suggests these are robust under variable constituent concentrations and likely to be species-sensitive. The study confirms that gas vacuoles cause significant increase in backscattering and are responsible for the high Rrs values observed in buoyant cyanobacterial blooms. Gas vacuoles are therefore one of the most important bio-optical substructures influencing the IOPs in phytoplankton.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
L. Giannuzzi ◽  
G. Carvajal ◽  
M. G. Corradini ◽  
C. Araujo Andrade ◽  
R. Echenique ◽  
...  

Water samples were collected during 3 years (2004–2007) at three sampling sites in the Rio de la Plata estuary. Thirteen biological, physical, and chemical parameters were determined on the water samples. The presence of microcystin-LR in the reservoir samples, and also in domestic water samples, was confirmed and quantified. Microcystin-LR concentration ranged between 0.02 and 8.6 μg.L−1. Principal components analysis was used to identify the factors promoting cyanobacteria growth. The proliferation of cyanobacteria was accompanied by the presence of high total and fecal coliforms bacteria (>1500 MNP/100 mL), temperature ≥25∘C, and total phosphorus content ≥1.24 mg·L−1. The observed fluctuating patterns ofMicrocystis aeruginosa, total coliforms, and Microcystin-LR were also described by probabilistic models based on the log-normal and extreme value distributions. The sampling sites were compared in terms of the distribution parameters and the probability of observing high concentrations forMicrocystis aeruginosa, total coliforms, and microcystin-LR concentration.


Sign in / Sign up

Export Citation Format

Share Document