Kinetic study of low-temperature sulfur dioxide removal reaction by sodium carbonate using random pore model

Author(s):  
Iman Omidi Bibalani ◽  
Habib Ale Ebrahim
2021 ◽  
Author(s):  
Iman Omidi ◽  
Habib Ale Ebrahim

Abstract An experimental investigation of low temperature SO2 removal by porous sodium carbonate was carried out by thermogravimetry. As well as, applied mathematical modeling based on the random pore model was employed to kinetic study of this reaction. The experiments were performed at various temperatures (100-250 oC) and different SO2 concentrations (0.13-1.12 vol%). The initial slopes procedure was used to determine dependency of the reaction rate constants versus temperature. First-order kinetic with respect to gaseous reactant was found and value of activation energy was attained as 22.5 kJ mol-1. Product layer diffusion coefficients were evaluated by the best fitting of experimental data with the model predictions. These random pore model predictions indicated good agreement with experimental conversion-time data at various conditions. The resulted kinetic parameters were avail abled for engineering calculations of SO2 abatement from the coal-based power plants by low-temperature flue gas desulfurization.


2014 ◽  
Vol 37 (12) ◽  
pp. 2037-2046 ◽  
Author(s):  
Hadi Moshiri ◽  
Bahram Nasernejad ◽  
Habib Ale Ebrahim ◽  
Mahboobeh Taheri

1996 ◽  
Vol 61 (8) ◽  
pp. 1141-1157 ◽  
Author(s):  
Květoslava Stejskalová ◽  
Zdeněk Bastl ◽  
Karel Mocek

The results are presented of a detailed experimental kinetic study of the heterogeneous reaction between gaseous sulfur dioxide and the solid active sodium carbonate of the second generation which has been prepared by a controlled thermal dehydration of higher hydrates of the sodium carbonate. The measurements have been carried out in an all-glass kinetic apparatus with an integral fixed-bed reactor. The reaction course was studied in dependence on genesis and nature of the active sodium carbonate, on temperature and on composition of the gas phase. The reaction rate is significantly affected by presence of the water vapour which acts as a gaseous catalyst. Experimental data have been treated by using the model proposed by Erdos (Collect. Czech. Chem. Commun. 32, 1653 (1967), and the values of the effective reaction rate constants have been computed. The kinetic study of active sodium carbonate of the second generation has been completed by the determination of microstructure (SEM) of solid samples before and after reaction, and by determining the solid surface composition before and after reaction by means of electronic spectra (ESCA).


1979 ◽  
Vol 44 (12) ◽  
pp. 3419-3424
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Dušan Husek ◽  
Emerich Erdös

The effect of particle size (0.33-1.0 mm) of the sodium carbonate on the reactivity of the active sodium carbonate prepared therefrom towards the sulfur dioxide was studied in a fixedbed integral reactor at a temperature of 150 °C. The found dependence of the reaction rate on the particle size exhibits an unexpected course; at sizes of about 0.65 mm, a distinct minimum appears. The reaction rate decreases approximately ten times in the first branch of this dependence. The controlling factor of the reactivity of sodium carbonate, however, remains to be the method of preparing the active form.


1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


Sign in / Sign up

Export Citation Format

Share Document