scholarly journals Field evidence of UK wild bird exposure to fludioxonil and extrapolation to other pesticides used as seed treatments

Author(s):  
Cannelle Tassin de Montaigu ◽  
Dave Goulson

AbstractWe determine the exposure of wild birds to pesticides via consumption of fludioxonil-treated winter wheat seeds following autumn drilling. We recorded the density of seeds left on the soil surface, bird density, and consumption of pesticide-treated seed by birds using camera traps. We calculated the dose ingested by each bird species in a single feeding bout and if they ate treated seeds exclusively for 1 day. We extrapolated this for an additional 19 pesticides commonly used as seed treatments, assuming equal consumption rates. All three fields contained grains on the soil surface (mean 7.14 seeds/m2 on sowing day). In total, 1,374 granivorous birds spanning 18 different species were observed in the fields, with 11 species filmed eating the seeds. Fludioxonil appears to pose a low risk to birds, with <1.14% of the LD50 potentially ingested by a bird for a daily maximum amount of seeds. Analysis of the further 19 pesticides commonly used as seed dressings suggests that the neonicotinoid insecticides imidacloprid, clothianidin, and thiamethoxam represent the highest risk for granivorous birds. For example, chaffinch (Fringilla coelebs) could consume 63% of LD50 of imidacloprid in a single feeding bout, and 370% in a day. Further investigation is clearly required to determine whether seeds treated with these other pesticides are consumed as readily as those treated with fludioxonil, as if so this is likely to cause significant harm.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5880 ◽  
Author(s):  
Sean McGee ◽  
Melissa Whitfield-Aslund ◽  
Daiana Duca ◽  
Nicole Kopysh ◽  
Tereza Dan ◽  
...  

The objective of this study was to quantify consumption of clothianidin-treated corn seed by birds following standard planting practices. Based on post-planting seed counts on 21 fields in southwestern Ontario, Canada, between 29 and 813 seeds/ha (mean of 224 ± 167 (SD)) were estimated to remain on the soil surface immediately post planting (i.e., less than one seed per 10 m2). This represents between 0.03 and 1.2% of the total sown seeds. The number of seeds missing on each field on the third day after planting as a result of any process (e.g., removal by foraging birds or mammals or burial as a result of heavy rains) ranged from 0 to 136 seeds/ha (0 to 0.0136 seeds/m2). Behavior monitoring of individual birds and 24 h remote video surveillance were deployed to investigate how much of the treated seed remaining on the soil surface was consumed by birds. Spotting scopes were used to monitor the full duration of the field visits of 596 individual birds during morning hours for three consecutive days after planting on the 21 fields. Two birds were observed consuming treated seeds (one seed each) and three birds consumed seeds for which the treatment status could not be visually confirmed. Additionally, constant (24 h) video surveillance for 2–4 days immediately after planting was deployed at 24 areas where multiple treated seeds were found on the soil surface. Across 1,380 h of collected video footage (including both day and night periods), no birds were observed to consume any treated seeds. This study provides field evidence of two factors that determine exposure of birds to clothianidin-treated corn seeds: (1) standard sowing practices in Ontario are effective at burying treated seeds such that the proportion of sown seeds that remain on the soil surface after planting is low, and (2) birds monitored on these fields consumed very few of the clothianidin-treated corn seeds remaining on the soil surface after planting. As these results are dependent on planting techniques and seed characteristics, they are not necessarily applicable to other types of clothianidin treated seed.


1996 ◽  
Vol 11 (1) ◽  
pp. 39-47 ◽  
Author(s):  
M. Sean Clark ◽  
Stuart H. Gage

AbstractWe evaluated the effects of free-range chickens and geese on insect pests and weeds in an experimental, nonchemical agroecosystem consisting of an apple orchard with intercropped potatoes. The objective was to assess the potential of these domestic bird species as biological control agents. Four insect pests were studied: plum curculio, apple maggot, Japanese beetle, and Colorado potato beetle. Chickens fed on several potential crop pests, including Japanese beetle. Although Japanese beetles were less abundant on apple trees when chickens were present, the proportion of damaged fruit was not reduced. Furthermore, chickens did not affect weed abundance or crop productivity. In contrast, geese were effective weeders. Their activities reduced weed abundance and increased potato plant growth and yields compared with a minimally weeded control. In addition, the activities of geese indirectly reduced apple fruit damage by plum curculio and increased the proportion of pest-free fruit, possibly because removal of vegetation by the geese reduced humidity at the soil surface and therefore reduced the activity of plum curculio.


NeoBiota ◽  
2019 ◽  
Vol 53 ◽  
pp. 25-39
Author(s):  
Łukasz Dylewski ◽  
Łukasz Myczko ◽  
Dean E. Pearson

When alien plant species arrive in a new environment, they develop novel interactions with native biota that can range from negative to positive. Determining the nature and strength of these interactions is integral to understanding why some aliens are suppressed and others become highly invasive pests. For introduced terrestrial plants, seed and seedling interactions with native biota are crucial, because most nascent populations start from seed. Herein, we explored interactions between native generalist rodent and bird consumers and seeds of the invasive wild cucumber Echinocystis lobata by conducting seed-offering experiments in Poland. We also evaluated how interspecific competition from native plants and intraspecific competition from clustering of E. lobata seed (clustering resembling consumer seed caching) affected survival of seedlings and young plants. Native consumers interacted strongly with E. lobata seeds, with rodents removing 98% of seeds from ground locations and birds removing 24% of elevated seeds. Camera and live traps indicated that striped field mice Apodemus agrarius were the predominant rodent removing seeds. Camera traps and visual observations indicated that great tits Parus major and European jays Garrulus glandarius were the primary bird species removing elevated seeds. While some level of seed removal was likely attributable to seed predation, as indicated by seed coat remains, we also observed evidence that rodents may cache E. lobata seeds and Garrulus glandarius are known to cache and disperse seeds. Monitoring of seedlings indicated that increasing cover of native plants and clustering of E. lobata seedlings both reduced survival of seedlings and young plants due to inter- and intraspecific competition, respectively. Hence, caching by generalist consumers may disperse E. lobata seeds, which are heavy and lack dispersal adaptations, but such caching may also reduce individual seedling survival rates. Fully understanding invasion success of the E. lobata will require evaluating the net effects of generalist consumers on its recruitment and dispersal.


The Auk ◽  
1986 ◽  
Vol 103 (3) ◽  
pp. 593-602 ◽  
Author(s):  
Richard L. Hutto ◽  
Sandra M. Pletschet ◽  
Paul Hendricks

Abstract We provide a detailed description of a fixed-radius point count method that carries fewer assumptions than most of the currently popular methods of estimating bird density and that can be used during both the nonbreeding and breeding seasons. The method results in three indices of bird abundance, any of which can be used to test for differences in community composition among sites, or for differences in the abundance of a given bird species among sites. These indices are (1) the mean number of detections within 25 m of the observer, (2) the frequency of detections within 25 m of the observer, and (3) the frequency of detections regardless of distance from the observer. The overall ranking of species abundances from a site is similar among the three indices, but discrepancies occur with either rare species that are highly detectable at great distances or common species that are repulsed by, or inconspicuous when near, the observer. We argue that differences in the behavior among species will preclude an accurate ranking of species by abundance through use of this or any other counting method in current use.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2275
Author(s):  
Haijun Liu ◽  
Congyan Yin ◽  
Xiaodong Hu ◽  
Josef Tanny ◽  
Xiaopei Tang

In north China, vegetables are always cultivated in conventional solar greenhouses (SG), however, these structures cannot be used during most of the winter due to extremely low temperatures. In this study, a new type of a solar greenhouse named sunken solar greenhouse (SSG), where the inside soil surface is lowered 1–2 m below outside and the back wall is 5–8 m width at the bottom and 1.5–2 m on top, was investigated. Inside climatic variables were recorded and compared with those outside during seven cucumber cultivation seasons. Crop evapotranspiration (ETc) was estimated using the Penman–Monteith method. Results show that inside solar radiation was reduced by approximately 40%, however days with a daily maximum inside temperature higher than 20 °C accounted for 80–90% of the days during the winter, which greatly enhanced cucumber fruit production compared to common SGs. The reference crop evapotranspiration (ETo) inside the SSG was reduced by 27% compared to outside. The estimated ETc was generally lower than 4 mm day−1, which resulted in a basal crop coefficient of 0.83. In conclusion, the SSG is environmental-friendly, preferable for winter vegetable cultivation in north China, and can be useful for other regions of the world with cold winter conditions.


Diversity ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 56 ◽  
Author(s):  
Raimo Virkkala ◽  
Juha Aalto ◽  
Risto K. Heikkinen ◽  
Ari Rajasärkkä ◽  
Saija Kuusela ◽  
...  

Increased attention is being paid to the ecological drivers and conservation measures which could mitigate climate change-induced pressures for species survival, potentially helping populations to remain in their present-day locations longer. One important buffering mechanism against climate change may be provided by the heterogeneity in topography and consequent local climate conditions. However, the buffering capacity of this topoclimate has so far been insufficiently studied based on empirical survey data across multiple sites and species. Here, we studied whether the fine-grained air temperature variation of protected areas (PAs) affects the population changes of declining northern forest bird species. Importantly to our study, in PAs harmful land use, such as logging, is not allowed, enabling the detection of the effects of temperature buffering, even at relatively moderate levels of topographic variation. Our survey data from 129 PAs located in the boreal zone in Finland show that the density of northern forest species was higher in topographically heterogeneous PAs than in topographically more homogeneous PAs. Moreover, local temperature variation had a significant effect on the density change of northern forest birds from 1981–1999 to 2000–2017, indicating that change in bird density was generally smaller in PAs with higher topographic variation. Thus, we found a clear buffering effect stemming from the local temperature variation of PAs in the population trends of northern forest birds.


2019 ◽  
Vol 73 (1) ◽  
Author(s):  
Pablo D. Ribeiro ◽  
Diego D. Navarro ◽  
Luciano M. Jaureguy ◽  
Pedro Daleo ◽  
Oscar O. Iribarne

Abstract The southernmost permanent population of the fiddler crab Leptuca uruguayensis occurs along the Samborombón Bay (36°22′S, 56°45′W, Argentina), an important feeding site for many bird species, including ruddy turnstones (Arenaria interpres), whimbrels (Numenius phaeopus), grey plovers (Pluvialis squatarola), american golden plovers (Pluvialis dominica) and gull-billed terns (Gelochelidon nilotica). Although all these birds are known to prey on many fiddler crab species worldwide, there is no estimation of their joint predation impacts, probably due to the difficulty in conducting experiments on an appropriate spatial scale. In these situations, computer simulation methods are useful tools. By using Monte Carlo methods and field data, we modeled the decrease of a fiddler crab population due to bird predation. The model found that under current bird occurrences and crab densities, birds do not consume more than 0.03% of the studied fiddler crab populations. Birds only consume more than 10% of the population if crab density is below 0.02 crabs m2, or if bird occurrences are at least 3 orders of magnitude higher than currently observed. Both situations are unlikely, as mean crab density is 140 crabs m2, and bird density is never so high. Furthermore, by monitoring three different fiddler crab patches, we found that bird predation cannot account for temporal density changes, suggesting that other population processes are more important than bird predation. In conclusion, even though fiddler crabs may exhibit strong predator-avoidance behavior, direct lethal effects of bird predation are currently small.


1991 ◽  
Vol 31 (3) ◽  
pp. 401 ◽  
Author(s):  
IJ Porter ◽  
JP Maughan ◽  
GB Towers

The effects of different methods of applying procymidone, either alone or combined, were evaluated for control of white rot (caused by Sclerotium cepivorum Berk.) in onions at 2 sites in Victoria.Field trials at Colac showed that seed treatments combined with sprays to the soil surface gave the most effective control of white rot, reducing disease from 78 to 16% and increasing yields from 5.7 to 14.6 t/ha in brown onions. Sprays applied to the soil surface at 2.5 kg a.i./ha had no effect on emergence and reduced disease incidence from 65.3 to 21.7%. Seed treatment at 25 g procymidone/kg seed delayed the onset of disease by 80 days and reduced disease incidence by 30%. The same treatment also reduced plant emergence by more than 27% and, therefore, did not increase yields. Dispersible granules (5 or 10%; at 2.5 kg procymidone/ha) were as effective as the soil sprays at sowing. Stem base sprays applied 11 and 19 weeks after sowing reduced disease incidence slightly but did not increase yields. Procymidone applied with bands of fertiliser 2 or 5 cm below the seed was not effective. Two formulations of procymidone, Sumisclex 500 (50% a.i.) and 275 Flocol (27.5% a.i.), were equally effective in controlling white rot. At Lang Lang, root-dips of 14-week-old seedlings in 5 g procymidone/L reduced white rot in transplanted white globe onions. Procymidone concentrations of 0.05-50 g a.i./L applied for periods ranging from 2 s to 30 min had no effect on plant establishment in a glasshouse.


2018 ◽  
Vol 35 ◽  
pp. 1-8 ◽  
Author(s):  
Laís Ribeiro-Silva ◽  
Daniel Fernandes Perrella ◽  
Carlos Biagolini-Jr ◽  
Paulo Zima ◽  
Augusto J. Piratelli ◽  
...  

Identification of the predators of bird nests is essential to test ecological and evolutionary hypotheses and to make practical management decisions. A variety of nest monitoring devices have been proposed but many remain difficult to set up in the field. The aim of this study was to test camera traps as a potential tool to study predation of natural nests in a tropical rainforest environment. Specifically, we registered the predators, assessed their size range, and we compared the use of one and two cameras per nest. Of 122 nests from 24 bird species, 45 (37%) were depredated, and the cameras recorded the predator species in 29 of the total of depredated nests (64%). We identified predators in eight of 16 depredated nests (50%) in which we used one camera trap per nest, and we identified predators in 21 of 29 depredated nests (72%) when we used two camera traps per nest. The predators included six species of birds and six species of mammals, with body masses varying from 20 g to 16.5 kg. Causes for 10 of the 16 detection failures were identified and are discussed. These results suggest that camera traps are viable tools to investigate nest predation in a tropical rainforest area.


2018 ◽  
Vol 35 ◽  
pp. 1-8
Author(s):  
Laís Ribeiro-Silva ◽  
Daniel Fernandes Perrella ◽  
Carlos Biagolini-Jr ◽  
Paulo Zima ◽  
Augusto J. Piratelli ◽  
...  

Identification of the predators of bird nests is essential to test ecological and evolutionary hypotheses and to make practical management decisions. A variety of nest monitoring devices have been proposed but many remain difficult to set up in the field. The aim of this study was to test camera traps as a potential tool to study predation of natural nests in a tropical rainforest environment. Specifically, we registered the predators, assessed their size range, and we compared the use of one and two cameras per nest. Of 122 nests from 24 bird species, 45 (37%) were depredated, and the cameras recorded the predator species in 29 of the total of depredated nests (64%). We identified predators in eight of 16 depredated nests (50%) in which we used one camera trap per nest, and we identified predators in 21 of 29 depredated nests (72%) when we used two camera traps per nest. The predators included six species of birds and six species of mammals, with body masses varying from 20 g to 16.5 kg. Causes for 10 of the 16 detection failures were identified and are discussed. These results suggest that camera traps are viable tools to investigate nest predation in a tropical rainforest area.


Sign in / Sign up

Export Citation Format

Share Document