scholarly journals Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale

2012 ◽  
Vol 17 (5) ◽  
pp. 646-654 ◽  
Author(s):  
Roel J. K. Helmes ◽  
Mark A. J. Huijbregts ◽  
Andrew D. Henderson ◽  
Olivier Jolliet
2010 ◽  
Vol 14 (2) ◽  
pp. 1-22 ◽  
Author(s):  
Philip Potter ◽  
Navin Ramankutty ◽  
Elena M. Bennett ◽  
Simon D. Donner

Abstract Agriculture has had a tremendous impact on soil nutrients around the world. In some regions, soil nutrients are depleted because of low initial soil fertility or excessive nutrient removals through intense land use relative to nutrient additions. In other regions, application of chemical fertilizers and manure has led to an accumulation of nutrients and subsequent water quality problems. Understanding the current level and spatial patterns of fertilizer and manure inputs would greatly improve the ability to identify areas that might be sensitive to aquatic eutrophication or to nutrient depletion. The authors calculated spatially explicit fertilizer inputs of nitrogen (N) and phosphorus (P) by fusing national-level statistics on fertilizer use with global maps of harvested area for 175 crops. They also calculated spatially explicit manure inputs of N and P by fusing global maps of animal density and international data on manure production and nutrient content. Significantly higher application rates were found for both fertilizers and manures in the Northern Hemisphere, with maxima centered on areas with intensive cropland and high densities of livestock. Furthermore, nutrient use is confined to a few major hot spots, with approximately 10% of the treated land receiving over 50% of the use of both fertilizers and manures. The authors’ new spatial disaggregation of the rich International Fertilizer Industry Association (IFA) fertilizer-use dataset will provide new and interesting avenues to explore the impact of anthropogenic activity on ecosystems at the global scale and may also have implications for policies designed to improve soil quality or reduce nutrient runoff.


2016 ◽  
Author(s):  
Daniel Moran ◽  
Keiichiro Kanemoto

Summary SentenceSpatially explicit footprints make it possible to locate biodiversity hotspots linked to global supply chains.Identifying species threat hotspots has been a successful approach for setting conservation priorities. One major challenge in conservation is that in many hotspots export industries continue to drive overexploitation. Conservation measures must consider not just the point of impact, but also the consumer demand that ultimately drives resource use. To understand which species threat hotspots are driven by which consumers, we have developed a new approach to link a set of biodiversity footprint accounts to the hotspots of threatened species on the IUCN Red List. The result is a map connecting global supply chains to impact locations. Connecting consumption to spatially explicit hotspots driven by production has not been done before on a global scale. Locating biodiversity threat hotspots driven by consumption of goods and services can help connect conservationists, consumers, companies, and governments in order to better target conservation actions.


2020 ◽  
Author(s):  
Isabel Meza ◽  
Stefan Siebert ◽  
Petra Döll ◽  
Jürgen Kusche ◽  
Claudia Herbert ◽  
...  

<p>Drought is a recurrent global phenomenon considered one of the most complex hazards with manifold impacts on communities, ecosystems, and economies. While many sectors are affected by drought, agriculture’s high dependency on water makes it particularly susceptible to droughts, threatening the livelihoods of many, and hampering the achievement of the Sustainable Development Goals. Identifying pathways towards more drought resilient societies by analyzing the drivers and spatial patterns of drought risk is of increasing importance for the identification, prioritization and planning of risk reduction, risk transfer and adaptation options. While major progress has been made regarding the mapping, prediction and monitoring of drought events at different spatial scales (local to global), comprehensive drought risk assessments that consider the complex interaction of drought hazards, exposure and vulnerability factors are still the exception.</p><p>Here, we present, for the first time, a global-scale drought risk assessment at national level for both irrigated and rain-fed agricultural systems. The analysis integrates (1) composite drought hazard indicators based on historical climate conditions (1980-2016), (2) exposure data represented by the harvest area of irrigated and rainfed systems, and (3) an expert-weighted set of social-ecological vulnerability indicators. The latter were identified through a systematic review of literature (n = 105 peer-reviewed articles) and expert consultations (n = 78 experts). This study attempted to characterize the average drought risk for the whole study period.</p><p>Results show that drought risk of rain-fed and irrigated agricultural systems display different heterogeneous patterns at the global level with higher risk for southeastern Europe, as well as northern and southern Africa. The vulnerability to drought highlights the relevance to increase the countries’ coping capacity in order to reduce their overall drought risk. For instance, the United States, which despite being highly exposed to drought hazard, has low socio-ecological susceptibility and sufficiently high coping capacities to reduce the overall drought risk considerably. When comparing irrigated and rain-fed drought hazard/exposure, there are significant regional differences. For example, the northern part  of Central Africa and South America have low hazard/exposure levels of irrigated crops, resulting in a low total risk, although high vulnerability characterize these regions. South Africa, however, has a high amount of rain-fed crops exposed to drought, but a lower vulnerability compared to other African countries. Further, the drivers of drought risk vary substantially across and within countries, calling for spatially targeted risk reduction and adaptation options.</p><p>Findings from this study underline the relevance of analyzing drought risk from a holistic and integrated perspective that brings together data from different sources and disciplines and based on a spatially explicit approach. Being based on open-source data, the approach allows for reproduction in varying regions and for different spatial scales, and can serve as a blueprint for future drought risk assessments for other affected sectors, such as water supply, tourism, or energy. By providing information on the underlying drivers and patterns of drought risk, this approach supports the identification of priority regions and provides entry points for targeted drought risk reduction and adaptation options to move towards resilient agricultural systems.</p>


2017 ◽  
Vol 23 (6) ◽  
pp. 1286-1296 ◽  
Author(s):  
Nuno Cosme ◽  
Emilio Mayorga ◽  
Michael Z. Hauschild

Land ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 14 ◽  
Author(s):  
Jennifer Hewson ◽  
Stefano Crema ◽  
Mariano González-Roglich ◽  
Karyn Tabor ◽  
Celia Harvey

Despite global recognition of the social, economic and ecological impacts of deforestation, the world is losing forests at an alarming rate. Global and regional efforts by policymakers and donors to reduce deforestation need science-driven information on where forest loss is happening, and where it may happen in the future. We used spatially-explicit globally-consistent variables and global historical tree cover and loss to analyze how global- and regional-scale variables contributed to historical tree cover loss and to model future risks of tree cover loss, based on a business-as-usual scenario. Our results show that (1) some biomes have higher risk of tree cover loss than others; (2) variables related to tree cover loss at the global scale differ from those at the regional scale; and (3) variables related to tree cover loss vary by continent. By mapping both tree cover loss risk and potential future tree cover loss, we aim to provide decision makers and donors with multiple outputs to improve targeting of forest conservation investments. By making the outputs readily accessible, we anticipate they will be used in other modeling analyses, conservation planning exercises, and prioritization activities aimed at conserving forests to meet national and global climate mitigation targets and biodiversity goals.


Author(s):  
Simon Dellicour ◽  
Keith Durkin ◽  
Samuel L. Hong ◽  
Bert Vanmechelen ◽  
Joan Martí-Carreras ◽  
...  

Since the start of the COVID-19 pandemic, an unprecedented number of genomic sequences of the causative virus (SARS-CoV-2) have been generated and shared with the scientific community. The unparalleled volume of available genetic data presents a unique opportunity to gain real-time insights into the virus transmission during the pandemic, but also a daunting computational hurdle if analysed with gold-standard phylogeographic approaches. We here describe and apply an analytical pipeline that is a compromise between fast and rigorous analytical steps. As a proof of concept, we focus on the Belgium epidemic, with one of the highest spatial density of available SARS-CoV-2 genomes. At the global scale, our analyses confirm the importance of external introduction events in establishing multiple transmission chains in the country. At the country scale, our spatially-explicit phylogeographic analyses highlight that the national lockdown had a relatively low impact on both the lineage dispersal velocity and the long-distance dispersal events within Belgium. Our pipeline has the potential to be quickly applied to other countries or regions, with key benefits in complementing epidemiological analyses in assessing the impact of intervention measures or their progressive easement.


2021 ◽  
Vol 13 (6) ◽  
pp. 3035-3056
Author(s):  
Xueqiong Wei ◽  
Mats Widgren ◽  
Beibei Li ◽  
Yu Ye ◽  
Xiuqi Fang ◽  
...  

Abstract. Spatially explicit historical land cover datasets are essential not only for simulations of climate and environmental dynamics but also for projections of future land use, food security, climate, and biodiversity. However, widely used global datasets are developed for continental- to global-scale analysis and simulations. Their accuracy depends on the verification of more regional reconstruction results. This study collects cropland area data of each administrative unit (parish/municipality/county) in Scandinavia from multiple sources. The cropland area data are validated, calibrated, interpolated, and allocated into 1 km×1 km grid cells. Then, we develop a dataset with spatially explicit cropland area from 1690 to 1999. Results indicate that the cropland area increased from 1.82×106 ha to 6.71×106 ha from 1690 to 1950 and then decreased to 5.90×106 ha in 1999. Before 1810, cropland cover expanded in southern Scandinavia and remained stable in northern Scandinavia. From 1810 to 1910, northern Scandinavia experienced slight cropland expansion. The cropland area increased rapidly in the southern part of the study area before changing slightly. After 1950, the cropland areas began to decrease in most regions, especially in eastern Scandinavia. When comparing global datasets with this study, although the total Scandinavia cropland area is in agreement among SAGE (Center for Sustainability and the Global Environment), HYDE (History Database of the Global Environment ) 3.2, PJ (Pongratz Julia), and this study, the spatial patterns show considerable differences, except for in Denmark between HYDE 3.2 and this study. The dataset can be downloaded from https://doi.org/10.1594/PANGAEA.926591 (Wei et al., 2021).


2019 ◽  
Vol 14 ◽  
pp. 8-13 ◽  
Author(s):  
Hannah Lois Owens ◽  
Robert Guralnick

As continental and global-scale paleoclimate model data become more readily available, biologists can now ask spatially explicit questions about the tempo and mode of past climate change and the impact of those changes on biodiversity patterns. In particular, researchers have focused on climate stability as a key variable that can drive expected patterns of richness, phylogenetic diversity and functional diversity. Yet, climate stability measures are not formalized in the literature and tools for generating stability metrics from existing data are nascent. Here we define “deviation” of a climate variable as the mean standard deviation between time slices over time elapsed; “stability” is defined as the inverse of this deviation. Finally, climate stability is the product of individual climate variable stability estimates. We also present an R package, climateStability, which contains tools for researchers to generate climate stability estimates from their own data.


Sign in / Sign up

Export Citation Format

Share Document