scholarly journals Developing non-residential building stock archetypes for LCI—a German case study of office and administration buildings

Author(s):  
Michael Buschka ◽  
Julian Bischof ◽  
Christina Meier-Dotzler ◽  
Werner Lang

Abstract Purpose To accomplish the national and international climate goals, building renovation and optimisation of their energy and resource efficiency are essential. Thus, reliable information on the building stock (BS) is necessary. Most previous building typologies are focussing on residential buildings and the operational phase. This paper shows the development of a methodology for generating non-residential building (NRB) typologies for life cycle inventory analysis (LCI) of building constructions. Hereby, archetypes of office, administration and department (OAD) buildings are developed, exemplarily for the German NRB stock. The methodology can further be utilised for quantity surveying of urban material stocks, related recycling scenarios and waste management. Furthermore, the exemplarily generated archetypes provide necessary information for the estimation of realistic refurbishment scenarios. Methods Approaches for the development of NRB archetypes, the descriptions of associated building materials and the LCI of BS were analysed and integrated into a methodology. It provides a clear path on the classification in building usage categories and determination of relevant building parameters for conducting LCI studies. Its aim is the creation of NRB typologies, presenting construction materials and building geometry in a useful way for life-cycle assessments (LCA). To demonstrate the methodology’s usability, it is applied to a case study with the sample of 161 OAD buildings, provided by the German NRB database ENOB:dataNWG. In combination with relevant literature on BS archetypes and materials, a sample OAD building typology has been created. Results and discussion Minimum data requirements for conducting simplified LCI calculation of BSs were identified by analysing existing LCA methods, like the German BNB system. Important clusters for developing NRB archetypes were determined: building usage category, building construction types and building age. These data gaps between required information for simplified LCA studies and available information in ENOB:dataNWG were identified, and solutions for closing these data gaps were proposed and tested. Since building archetypes must reflect the overall BS, uncertainties were discussed. The ENOB:dataNWG database was not completed at the time this paper was written, so comprehensive uncertainty analyses are important next steps. Conclusions This methodology development forms the groundwork for creating LCI building typologies for simplified LCA studies. It shows practically how to deal with a BS database and illustrates which typical values can be chosen for closing data gaps. The methodology was tested on an exemplary sample of OAD buildings. Based on this case study, the methodology concept was proven useful for the generation of a NRB typology.

Author(s):  
H. Harter ◽  
B. Willenborg ◽  
W. Lang ◽  
T. H. Kolbe

Abstract. Reducing the demand for non-renewable resources and the resulting environmental impact is an objective of sustainable development, to which buildings contribute significantly. In order to realize the goal of reaching a climate-neutral building stock, it must first be analyzed and evaluated in order to develop optimization strategies. The life cycle based consideration and assessment of buildings plays a key role in this process. Approaches and tools already exist for this purpose, but they mainly take the operational energy demand of buildings and not a life cycle based approach into account, especially when assessing technical building services (TBS). Therefore, this paper presents and applies a methodical approach for the life cycle based assessment of the TBS of large residential building stocks, based on semantic 3D city models (CityGML). The methodical approach developed for this purpose describes the procedure for calculating the operational energy demand (already validated) and the heating load of the building, the dimensioning of the TBS components and the calculation of the life cycle assessment. The application of the methodology is illustrated in a case study with over 115,000 residential buildings from Munich, Germany. The study shows that the methodology calculates reliable results and that a significant reduction of the life cycle based energy demand can be achieved by refurbishment measures/scenarios. Nevertheless, the goal of achieving a climate-neutral building stock is a challenge from a life cycle perspective.


Author(s):  
Daniela Koppelhuber ◽  
Johannes Wall

More than 95% of multi-story residential buildings in Austria are currently predominantly constructed with conventional mineral construction materials. This fact combined with the increasing demands for a healthy residential living atmosphere demonstrates the great potential for using ecological materials. Life cycle assessments provide information on the ecological performance of buildings, but the corresponding economical aspects are not considered. Nevertheless, the economic aspects of a certain draft are important to clients and designers. Therefore, simplified assessment-tools are needed that take into account the ecological impact as well as the building costs. This paper presents the results of an investigation supplemented by a case study of a multistory residential building, which was finished 2016 in Austria, illustrating the differences between the state-of-the-art material selection and ecologically optimized alternatives. The ecological impacts and the costs for the selected building-system were determined based on the case study. Subsequently, ecological optimization potentials were identified according to the environmental indicator OI3. Finally, the effects on component and construction costs were evaluated. The steps of this simplified process reveal the interdependency between ecological aspects and the costs of materials. This procedure represents a decision-making tool that can be used by clients as well as designers. The results of this research emphasize the large environmental impact improvements with little expenses when implementing sustainability in multi-story residential buildings as a crucial part of a green design.


2018 ◽  
Vol 10 (8) ◽  
pp. 2820 ◽  
Author(s):  
Hyojin Lim ◽  
Sungho Tae ◽  
Seungjun Roh

In recent years, much research has been conducted internationally to quantitatively evaluate the environmental impact of buildings in order to reduce greenhouse gas emissions and address associated environmental problems. With this in mind, the Green Standard for Energy and Environmental Design (G-SEED) in South Korea was revised in 2016. However, the various possible evaluation methods make it difficult to conduct building life cycle assessment. Moreover, compared to research on residential buildings, life cycle assessment research on non-residential buildings is scarce. Therefore, this study analyzes primary building materials for life cycle assessment of current non-residential buildings to support Korean G-SEED requirements. Design documents for various non-residential buildings are obtained, and the types and numbers of materials used in production are determined. Next, the primary building materials contributing high cumulative weight based on the ISO14040 series of standards are analyzed. We then review the most commonly-used building materials while considering non-residential building types and structures. In addition, construction material reliability is evaluated using the environmental impact unit value. With our results, by suggesting the primary building materials in non-residential buildings, efficient life cycle assessment of non-residential buildings is possible in terms of time and cost.


Author(s):  
Md. Al Sadikul Islam ◽  
Md. Ashiquzzaman ◽  
Amiu Shadik Utshab ◽  
Nehreen Majed

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6550
Author(s):  
Seongwon Seo ◽  
Greg Foliente

Since existing residential buildings are a significant global contributor to energy consumption and greenhouse gas (GHG) emissions, any serious effort to reduce the actual energy and carbon emissions of the building sector should explicitly address the carbon mitigation challenges and opportunities in the building stock. This research investigates environmentally and economically sustainable retrofit methods to reduce the carbon footprint of existing residential buildings in the City of Greater Dandenong as a case study in Metropolitan Melbourne, Australia. By categorizing energy use into various building age brackets and dwelling types that align with changes in energy regulations, we identified various retrofit prototypes to achieve a targeted 6.5-star and 8-star energy efficiency rating (out of a maximum 10-star rating system). The corresponding operational energy savings through different retrofit options are examined while also considering the quantity of materials required for each option, along with their embodied energy and GHG emissions, thus allowing a more comprehensive lifecycle carbon analysis and exploration of their financial and environmental payback times. Results show that when buildings are upgraded with a combination of insulation and double-glazed windows, the environmental benefits rise faster than the financial benefits over a dwelling’s lifecycle. The size or percentage of a particular dwelling type within the building stock and the remaining lifecycle period are found to be the most important factors influencing the payback periods. Retrofitting the older single detached dwellings shows the greatest potential for lifecycle energy and carbon savings in the case suburb. These findings provide households, industry and governments some guidance on how to contribute most effectively to reduce the carbon footprint of the residential building sector.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Mehzabeen Mannan ◽  
Sami G. Al-Ghamdi

Water use in buildings accounts for a large share in global freshwater consumption where research on the impacts of life cycle water use receive little or no attention. Moreover, there is very limited knowledge regarding such impacts that focus on the life cycle emissions from water consumption in building environments in the world’s most water-stressed countries. Hence, this study attempted to quantify the environmental impacts of operational water use in a multi-family residential building through a life cycle assessment (LCA). A small part of a Middle Eastern country, Doha (Qatar), has been selected for the primary assessment, while water-use impact in Miami (Florida) was chosen as a second case study, as both locations fall into similar climate zone according to ASHRAE Climate Zone Map. The LCA score indicated much higher impacts in the Doha case study compared to Miami. The variation in the result is mainly attributed to the raw water treatment stage in Doha, which involves energy-intensive thermal desalination. Again, relative comparison of the annual water and electricity use impacts for the modeled building was performed at the final stage for both locations. Water use was attributable for 18% of the environmental impacts in Miami, while this value increased to 35% in Doha. This initial assembled LCA result will be beneficial to both water authorities and building research communities in establishing more sustainable water use policies for specific regions/countries that will ultimately benefit the overall building environment.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


2021 ◽  
Vol 13 (8) ◽  
pp. 4099
Author(s):  
Ann-Kristin Mühlbach ◽  
Olaf Mumm ◽  
Ryan Zeringue ◽  
Oskars Redbergs ◽  
Elisabeth Endres ◽  
...  

The METAPOLIS as the polycentric network of urban–rural settlement is undergoing constant transformation and urbanization processes. In particular, the associated imbalance of the shrinkage and growth of different settlement types in relative geographical proximity causes negative effects, such as urban sprawl and the divergence of urban–rural lifestyles with their related resource, land and energy consumption. Implicitly related to these developments, national and global sustainable development goals for the building sector lead to the question of how a region can be assessed without detailed research and surveys to identify critical areas with high potential for sustainable development. In this study, the TOPOI method is used. It classifies settlement units and their interconnections along the urban–rural gradient, in order to quantify and assess the land-uptake and global warming potential driven by residential developments. Applying standard planning parameters in combination with key data from a comprehensive life cycle assessment of the residential building stock, a detailed understanding of different settlement types and their associated resource and energy consumption is achieved.


Sign in / Sign up

Export Citation Format

Share Document