scholarly journals Copper ions influence the toxicity of β-amyloid(1–42) in a concentration-dependent manner in a Caenorhabditis elegans model of Alzheimer’s disease

2011 ◽  
Vol 54 (6) ◽  
pp. 527-534 ◽  
Author(s):  
YunFeng Luo ◽  
Jie Zhang ◽  
NianQing Liu ◽  
Yuan Luo ◽  
BaoLu Zhao
Author(s):  
Chee Wah Yuen ◽  
Mardani Abdul Halim ◽  
Nazalan Najimudin ◽  
Ghows Azzam

AbstractAlzheimer’s disease (AD) is a brain disease attributed to the accumulation of extracellular senile plaques comprising β-amyloid peptide (Aβ). In this study, a transgenic Caenorhabditis elegans containing the human beta amyloid Aβ42 gene which exhibited paralysis when expressed, was used to study the anti-paralysis effect of salvianolic acid A. Various concentrations ranging from 1 μg/ml to 100 μg/ml of salvianolic acid A were tested and exhibited the highest effect on the worm at the concentration of 100 μg/ml. For anti-aggregation effect, 14 μg/ml salvianolic acid A (within 4 mg/ml of Danshen) showed a significant level of inhibition of the formation of Aβ fibrils. An amount of 100 μg/ml of salvianolic acid A had the potential in reducing the ROS but did not totally obliterate the ROS production in the worms. Salvianolic acid A was found to delay the paralysis of the transgenic C. elegans, decrease Aβ42 aggregation and decreased Aβ-induced oxidative stress.


2020 ◽  
Author(s):  
Chee Wah Yuen ◽  
Mardani Abdul Halim ◽  
Vikneswaran Murugaiyah ◽  
Nazalan Najimudin ◽  
Ghows Azzam

AbstractAlzheimer’s disease (AD) is a neurological disease caused by the accumulation of extracellular senile plaques consisting of β-amyloid peptide (Aβ) in the brain. A transgenic Caenorhabditis elegans which demonstrated paralysis due to the expression of human beta amyloid Aβ42 gene was used to study the anti-paralysis effect of mixed tocotrienols. The content of the mixed tocotrienols were 12.1% α-, 2.7% β-, 18.6% γ-, and 8.1% δ-tocotrienols. Mixed tocotrienols significantly delayed the Aβ-induced paralysis in the transgenic nematode and exhibited anti-oxidant properties towards Aβ-generated oxidative stress. The mixture also presented potent inhibitory activities against Aβ aggregation with an IC50 value of 600 ng/ml. It is concluded that mixed tocotrienols could potentially serve as a new therapeutic candidate for AD.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Johanna Michael ◽  
Diana Bessa de Sousa ◽  
Justin Conway ◽  
Erick Gonzalez-Labrada ◽  
Rodolphe Obeid ◽  
...  

The leukotriene receptor antagonist Montelukast (MTK) is an approved medication for the treatment of asthma and allergic rhinitis. The existing marketed tablet forms of MTK exhibit inconsistent uptake and bioavailability, which partially explains the presence of a significant proportion of MTK low- and non-responders in the population. Besides that, tablets are suboptimal formulations for patients suffering from dysphagia, for example, seen in patients with neurodegenerative diseases such as Alzheimer’s disease, a disease with increasing interest in repurposing of MTK. This, and the need for an improved bioavailability, triggered us to reformulate MTK. Our aim was to develop a mucoadhesive MTK film with good safety and improved pharmacological features, i.e., an improved bioavailability profile in humans as well as in a mouse model of Alzheimer’s disease. We tested dissolution of the MTK mucoadhesive film and assessed pharmacoexposure and kinetics after acute and chronic oral application in mice. Furthermore, we performed a Phase I analysis in humans, which included a comparison with the marketed tablet form as well as a quantitative analysis of the MTK levels in the cerebrospinal fluid. The novel MTK film demonstrated significantly improved bioavailability compared to the marketed tablet in the clinical Phase 1a study. Furthermore, there were measurable amounts of MTK present in the cerebrospinal fluid (CSF). In mice, MTK was detected in serum and CSF after acute and chronic exposure in a dose-dependent manner. The mucoadhesive film of MTK represents a promising alternative for the tablet delivery. The oral film might lower the non-responder rate in patients with asthma and might be an interesting product for repurposing of MTK in other diseases. As we demonstrate Blood-Brain-Barrier (BBB) penetrance in a preclinical model, as well as in a clinical study, the oral film of MTK might find its use as a therapeutic for acute and chronic neurodegenerative diseases such as dementias and stroke.


2009 ◽  
Vol 5 (4S_Part_14) ◽  
pp. P422-P422
Author(s):  
M. Pizzi ◽  
A. Lanzillotta ◽  
B.P. Imbimbo ◽  
B. Hutter-Paier ◽  
G. Villetti ◽  
...  

Author(s):  
Carl W. Cotman ◽  
David H. Cribbs ◽  
Aileen J. Anderson

Sign in / Sign up

Export Citation Format

Share Document