scholarly journals A community effort to assess and improve computerized interpretation of 12-lead resting electrocardiogram

Author(s):  
Zijian Ding ◽  
Guijin Wang ◽  
Huazhong Yang ◽  
Ping Zhang ◽  
Dapeng Fu ◽  
...  

AbstractComputerized interpretation of electrocardiogram plays an important role in daily cardiovascular healthcare. However, inaccurate interpretations lead to misdiagnoses and delay proper treatments. In this work, we built a high-quality Chinese 12-lead resting electrocardiogram dataset with 15,357 records, and called for a community effort to improve the performances of CIE through the China ECG AI Contest 2019. This dataset covers most types of ECG interpretations, including the normal type, 8 common abnormal types, and the other type which includes both uncommon abnormal and noise signals. Based on the Contest, we systematically assessed and analyzed a set of top-performing methods, most of which are deep neural networks, with both their commonalities and characteristics. This study establishes the benchmarks for computerized interpretation of 12-lead resting electrocardiogram and provides insights for the development of new methods.

Author(s):  
Wellison J. S. Gomes

Abstract Surrogate models are efficient tools which have been successfully applied in structural reliability analysis, as an attempt to keep the computational costs acceptable. Among the surrogate models available in the literature, Artificial Neural Networks (ANNs) have been attracting research interest for many years. However, the ANNs used in structural reliability analysis are usually the shallow ones, based on an architecture consisting of neurons organized in three layers, the so-called input, hidden and output layers. On the other hand, with the advent of deep learning, ANNs with one input, one output, and several hidden layers, known as deep neural networks, have been increasingly applied in engineering and other areas. Considering that many recent publications have shown advantages of deep over shallow ANNs, the present paper aims at comparing these types of neural networks in the context of structural reliability. By applying shallow and deep ANNs in the solution of four benchmark structural reliability problems from the literature, employing Monte Carlo simulation and adaptive experimental designs, it is shown that, although good results are obtained for both types of ANNs, deep ANNs usually outperform the shallow ones.


Author(s):  
S Thivaharan ◽  
G Srivatsun

The amount of data generated by modern communication devices is enormous, reaching petabytes. The rate of data generation is also increasing at an unprecedented rate. Though modern technology supports storage in massive amounts, the industry is reluctant in retaining the data, which includes the following characteristics: redundancy in data, unformatted records with outdated information, data that misleads the prediction and data with no impact on the class prediction. Out of all of this data, social media plays a significant role in data generation. As compared to other data generators, the ratio at which the social media generates the data is comparatively higher. Industry and governments are both worried about the circulation of mischievous or malcontents, as they are extremely susceptible and are used by criminals. So it is high time to develop a model to classify the social media contents as fair and unfair. The developed model should have higher accuracy in predicting the class of contents. In this article, tensor flow based deep neural networks are deployed with a fixed Epoch count of 15, in order to attain 25% more accuracy over the other existing models. Activation methods like “Relu” and “Sigmoid”, which are specific for Tensor flow platforms support to attain the improved prediction accuracy.


2022 ◽  
Vol 15 (3) ◽  
pp. 1-31
Author(s):  
Shulin Zeng ◽  
Guohao Dai ◽  
Hanbo Sun ◽  
Jun Liu ◽  
Shiyao Li ◽  
...  

INFerence-as-a-Service (INFaaS) has become a primary workload in the cloud. However, existing FPGA-based Deep Neural Network (DNN) accelerators are mainly optimized for the fastest speed of a single task, while the multi-tenancy of INFaaS has not been explored yet. As the demand for INFaaS keeps growing, simply increasing the number of FPGA-based DNN accelerators is not cost-effective, while merely sharing these single-task optimized DNN accelerators in a time-division multiplexing way could lead to poor isolation and high-performance loss for INFaaS. On the other hand, current cloud-based DNN accelerators have excessive compilation overhead, especially when scaling out to multi-FPGA systems for multi-tenant sharing, leading to unacceptable compilation costs for both offline deployment and online reconfiguration. Therefore, it is far from providing efficient and flexible FPGA virtualization for public and private cloud scenarios. Aiming to solve these problems, we propose a unified virtualization framework for general-purpose deep neural networks in the cloud, enabling multi-tenant sharing for both the Convolution Neural Network (CNN), and the Recurrent Neural Network (RNN) accelerators on a single FPGA. The isolation is enabled by introducing a two-level instruction dispatch module and a multi-core based hardware resources pool. Such designs provide isolated and runtime-programmable hardware resources, which further leads to performance isolation for multi-tenant sharing. On the other hand, to overcome the heavy re-compilation overheads, a tiling-based instruction frame package design and a two-stage static-dynamic compilation, are proposed. Only the lightweight runtime information is re-compiled with ∼1 ms overhead, thus guaranteeing the private cloud’s performance. Finally, the extensive experimental results show that the proposed virtualized solutions achieve up to 3.12× and 6.18× higher throughput in the private cloud compared with the static CNN and RNN baseline designs, respectively.


2020 ◽  
Vol 34 (04) ◽  
pp. 6030-6037
Author(s):  
MohamadAli Torkamani ◽  
Shiv Shankar ◽  
Amirmohammad Rooshenas ◽  
Phillip Wallis

Most deep neural networks use simple, fixed activation functions, such as sigmoids or rectified linear units, regardless of domain or network structure. We introduce differential equation units (DEUs), an improvement to modern neural networks, which enables each neuron to learn a particular nonlinear activation function from a family of solutions to an ordinary differential equation. Specifically, each neuron may change its functional form during training based on the behavior of the other parts of the network. We show that using neurons with DEU activation functions results in a more compact network capable of achieving comparable, if not superior, performance when compared to much larger networks.


Author(s):  
Piotr Duda ◽  
Maciej Jaworski ◽  
Andrzej Cader ◽  
Lipo Wang

AbstractIn recent years, many deep learning methods, allowed for a significant improvement of systems based on artificial intelligence methods. Their effectiveness results from an ability to analyze large labeled datasets. The price for such high accuracy is the long training time, necessary to process such large amounts of data. On the other hand, along with the increase in the number of collected data, the field of data stream analysis was developed. It enables to process data immediately, with no need to store them. In this work, we decided to take advantage of the benefits of data streaming in order to accelerate the training of deep neural networks. The work includes an analysis of two approaches to network learning, presented on the background of traditional stochastic and batch-based methods.


2021 ◽  
Author(s):  
Alexa R. Tartaglini ◽  
Wai Keen Vong ◽  
Brenden M. Lake

Recent work has paired classic category learning models with convolutional neural networks (CNNs), allowing researchers to study categorization behavior from raw image inputs. However, this research typically uses naturalistic images, which assess participant responses to existing categories; yet, much of traditional category learning research has focused on using novel, artificial stimuli to examine the learning process behind how people acquire categories. In this work, we pair a CNN with ALCOVE (Kruschke, 1992), a well-known exemplar model of categorization, and attempt to examine whether this model can reproduce the classic type ordering effect from Shepard, Hovland, and Jenkins (1961) on raw images rather than abstract features. We examine this question with a variety of CNN architectures and image datasets and compare ALCOVE-CNN to two other models that lacked certain key features of ALCOVE. We found that our ALCOVE-CNN model could reproduce the type ordering effect more often than the other models we tested, but in limited situations. Our results showed that success varied greatly across the various configurations we tested, suggesting that the feature representations from CNNs provide strong constraints in properly capturing this effect.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-37
Author(s):  
Nils Barlaug ◽  
Jon Atle Gulla

Entity matching is the problem of identifying which records refer to the same real-world entity. It has been actively researched for decades, and a variety of different approaches have been developed. Even today, it remains a challenging problem, and there is still generous room for improvement. In recent years, we have seen new methods based upon deep learning techniques for natural language processing emerge. In this survey, we present how neural networks have been used for entity matching. Specifically, we identify which steps of the entity matching process existing work have targeted using neural networks, and provide an overview of the different techniques used at each step. We also discuss contributions from deep learning in entity matching compared to traditional methods, and propose a taxonomy of deep neural networks for entity matching.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4587 ◽  
Author(s):  
Ángel Morera ◽  
Ángel Sánchez ◽  
A. Belén Moreno ◽  
Ángel D. Sappa ◽  
José F. Vélez

This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) deep neural networks for the outdoor advertisement panel detection problem by handling multiple and combined variabilities in the scenes. Publicity panel detection in images offers important advantages both in the real world as well as in the virtual one. For example, applications like Google Street View can be used for Internet publicity and when detecting these ads panels in images, it could be possible to replace the publicity appearing inside the panels by another from a funding company. In our experiments, both SSD and YOLO detectors have produced acceptable results under variable sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex background and multiple panels in scenes. Due to the difficulty of finding annotated images for the considered problem, we created our own dataset for conducting the experiments. The major strength of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable when the publicity contained inside the panel is analyzed after detecting them. On the other side, YOLO produced better panel localization results detecting a higher number of True Positive (TP) panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models with different types of semantic segmentation networks and using the same evaluation metrics is also included.


Sign in / Sign up

Export Citation Format

Share Document