scholarly journals Impulsive Fire Disturbance in a Savanna Model: Tree–Grass Coexistence States, Multiple Stable System States, and Resilience

2021 ◽  
Vol 83 (11) ◽  
Author(s):  
Alanna Hoyer-Leitzel ◽  
Sarah Iams

AbstractSavanna ecosystems are shaped by the frequency and intensity of regular fires. We model savannas via an ordinary differential equation (ODE) encoding a one-sided inhibitory Lotka–Volterra interaction between trees and grass. By applying fire as a discrete disturbance, we create an impulsive dynamical system that allows us to identify the impact of variation in fire frequency and intensity. The model exhibits three different bistability regimes: between savanna and grassland; two savanna states; and savanna and woodland. The impulsive model reveals rich bifurcation structures in response to changes in fire intensity and frequency—structures that are largely invisible to analogous ODE models with continuous fire. In addition, by using the amount of grass as an example of a socially valued function of the system state, we examine the resilience of the social value to different disturbance regimes. We find that large transitions (“tipping”) in the valued quantity can be triggered by small changes in disturbance regime.

2021 ◽  
Vol 4 ◽  
Author(s):  
Maximilian Hartung ◽  
Geovana Carreño-Rocabado ◽  
Marielos Peña-Claros ◽  
Masha T. van der Sande

Wildfires are becoming increasingly frequent and devastating in many tropical forests. Although seasonally dry tropical forests (SDTF) are among the most fire-threatened ecosystems, their long-term response to frequent wildfires remains largely unknown. This study is among the first to investigate the resilience in response to fire of the Chiquitano SDTF in Bolivia, a large ecoregion that has seen an unprecedented increase in fire intensity and frequency in recent years. We used remote sensing data to assess at a large regional and temporal scale (two decades) how fire frequency and environmental factors determine the resilience of the vegetation to fire disturbance. Resilience was measured as the resistance to fire damage and post-fire recovery. Both parameters were monitored for forested areas that burned once (F1), twice (F2), and three times (F3) between 2000 and 2010 and compared to unburned forests. Resistance and recovery were analyzed using time series of the Normalized Burn Ratio (NBR) index derived from Landsat satellite imagery, and climatic, topographic, and a human development-related variable used to evaluate their influence on resilience. The overall resilience was lowest in forests that burned twice and was higher in forests that burned three times, indicating a possible transition state in fire resilience, probably because forests become increasingly adapted during recurrent fires. Climatic variables, particularly rainfall, were most influential in determining resilience. Our results indicate that the Chiquitano dry forest is relatively resilient to recurring fires, has the capacity to recover and adapt, and that climatic differences are the main determinants of the spatial variation observed in resilience. Nevertheless, further research is needed to understand the effect of the higher frequency and intensity of fires expected in the future due to climate change and land use change, which may pose a greater threat to forest resilience.


2005 ◽  
Vol 21 (4) ◽  
pp. 435-444 ◽  
Author(s):  
Brent C. Blair

Anthropogenic wildfires are becoming increasingly frequent in wet tropical forests. This trend follows that of other anthropogenic disturbances, which are now acute and widespread. Fires pose a potentially serious threat to tropical forests. However, little is known about the impact of unintended forest fires on below-ground resources in these ecosystems. This study investigated the influence of fires on the distribution and variability of soil resources on two sets of 50×50-m burned and unburned plots in a Nicaraguan rain forest. Samples were collected at 5-m intervals throughout each plot as well as subsamples at 50-cm intervals. Geostatistical techniques as well as univariate statistics were used to quantify the spatial autocorrelation and variability of selected nutrients (N, P and K), carbon and standing leaf litter. Most variability in this forest was spatially dependent at a scale of 30 m or less. However the average range of autocorrelations varied greatly between properties and sites. Burning altered soil heterogeneity by decreasing the range over which soil properties were autocorrelated. Overall the average patch size (range) for nitrogen was reduced by 7%, phosphorus by 52%, potassium by 60% and carbon by 43%. While phosphorus and leaf litter increased in the burned plots compared to unburned plots, potassium was not different. Nitrogen and carbon did not display a consistent pattern between burning regimes and this may be explained by variation in fire intensity. Leaf litter measurements did not correlate with measured soil nutrients within plots. Observed changes in the burned forest were likely a result of both the intensity of burning and change in vegetative cover between the time of the fires and soil sampling.


2013 ◽  
Vol 10 (10) ◽  
pp. 15735-15778 ◽  
Author(s):  
W. Knorr ◽  
T. Kaminski ◽  
A. Arneth ◽  
U. Weber

Abstract. Human impact on wildfires, a major Earth system component, remains poorly understood. While local studies have found more fires close to settlements and roads, assimilated charcoal records and analyses of regional fire patterns from remote-sensing observations point to a decline in fire frequency with increasing human population. Here, we present a global analysis using three multi-year satellite-based burned-area products combined with a parameter estimation and uncertainty analysis with a non-linear model. We show that at the global scale, the impact of increasing population density is mainly to reduce fire frequency. Only for areas with up to 0.1 people per km2, we find that fire frequency increases by 10 to 20% relative to its value at no population. The results are robust against choice of burned-area data set, and indicate that at only very few places on Earth, fire frequency is limited by human ignitions. Applying the results to historical population estimates results in a moderate but accelerating decline of global burned area by around 14% since 1800, with most of the decline since 1950.


Fire ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 56
Author(s):  
Raquel Partelli-Feltrin ◽  
Daniel M. Johnson ◽  
Aaron M. Sparks ◽  
Henry D. Adams ◽  
Crystal A. Kolden ◽  
...  

The combination of drought and fire can cause drastic changes in forest composition and structure. Given the predictions of more frequent and severe droughts and forecasted increases in fire size and intensity in the western United States, we assessed the impact of drought and different fire intensities on Pinus ponderosa saplings. In a controlled combustion laboratory, we exposed saplings to surface fires at two different fire intensity levels (quantified via fire radiative energy; units: MJ m−2). The recovery (photosynthesis and bud development) and mortality of saplings were monitored during the first month, and at 200- and 370-days post-fire. All the saplings subjected to high intensity surface fires (1.4 MJ m−2), regardless of the pre-fire water status, died. Seventy percent of pre-fire well-watered saplings recovered after exposure to low intensity surface fire (0.7 MJ m−2). All of the pre-fire drought-stressed saplings died, even at the lower fire intensity. Regardless of the fire intensity and water status, photosynthesis was significantly reduced in all saplings exposed to fire. At 370 days post-fire, burned well-watered saplings that recovered had similar photosynthesis rates as unburned plants. In addition, all plants that recovered or attempted to recover produced new foliage within 35 days following the fire treatments. Our results demonstrate that the pre-fire water status of saplings is an important driver of Pinus ponderosa sapling recovery and mortality after fire.


2019 ◽  
Vol 28 (4) ◽  
pp. 282 ◽  
Author(s):  
Jon E. Keeley ◽  
Juli G. Pausas

Fire is a necessary ecosystem process in many biomes and is best viewed as a natural disturbance that is beneficial to ecosystem functioning. However, increasingly, we are seeing human interference in fire regimes that alters the historical range of variability for most fire parameters and results in vegetation shifts. Such perturbations can affect all fire regime parameters. Here, we provide a brief overview of examples where anthropogenically driven changes in fire frequency, fire pattern, fuels consumed and fire intensity constitute perturbations that greatly disrupt natural disturbance cycles and put ecosystems on a different trajectory resulting in type conversion. These changes are not due to fire per se but rather anthropogenic perturbations in the natural disturbance regime.


2014 ◽  
Vol 11 (4) ◽  
pp. 1085-1102 ◽  
Author(s):  
W. Knorr ◽  
T. Kaminski ◽  
A. Arneth ◽  
U. Weber

Abstract. Human impact on wildfires, a major earth system component, remains poorly understood. While local studies have found more fires close to settlements and roads, assimilated charcoal records and analyses of regional fire patterns from remote-sensing observations point to a decline in fire frequency with increasing human population. Here, we present a global analysis using three multi-year satellite-based burned-area products combined with a parameter estimation and uncertainty analysis with a non-linear model. We show that at the global scale, the impact of increasing population density is mainly to reduce fire frequency. Only for areas with up to 0.1 people per km2, we find that fire frequency increases by 10 to 20% relative to its value at no population. The results are robust against choice of burned-area data set, and indicate that at only very few places on earth, fire frequency is limited by human ignitions. Applying the results to historical population estimates results in a moderate but accelerating decline of global burned area by around 14% since 1800, with most of the decline since 1950.


2020 ◽  
Author(s):  
Adam F. A. Pellegrini ◽  
Tyler Refsland ◽  
Colin Averill ◽  
César Terrer ◽  
A. Carla Staver ◽  
...  

Global change has resulted in chronic shifts in fire regimes, increasing fire frequency in some regions and decreasing it in others. Predicting the response of ecosystems to changing fire frequencies is challenging because of the multi-decadal timescales over which fire effects emerge and the variability in environmental conditions, fire types, and plant composition across biomes. Here, we address these challenges using surveys of tree communities across 29 sites that experienced multi-decadal alterations in fire frequencies spanning ecosystems and environmental conditions. Relative to unburned plots, more frequently burned plots had lower tree basal area and stem densities that compounded over multiple decades: average fire frequencies reduced basal area by only 4% after 16 years but 57% after 64 years, relative to unburned plots. Fire frequency had the largest effects on basal area in savanna ecosystems and in sites with strong wet seasons. Analyses of tree functional-trait data across North American sites revealed that frequently burned plots had tree communities dominated by species with low biomass nitrogen and phosphorus content and with more efficient nitrogen acquisition through ectomycorrhizal symbioses (rising from 85% to nearly 100%). Our data elucidate the impact of long-term fire regimes on tree community structure and composition, with the magnitude of change depending on climate, vegetation type, and fire history. The effects of widespread changes in fire regimes underway today will manifest in decades to come and have long-term consequences for carbon storage and nutrient cycling.


2013 ◽  
Vol 44 (3) ◽  
pp. 209-218 ◽  
Author(s):  
Benoît Testé ◽  
Samantha Perrin

The present research examines the social value attributed to endorsing the belief in a just world for self (BJW-S) and for others (BJW-O) in a Western society. We conducted four studies in which we asked participants to assess a target who endorsed BJW-S vs. BJW-O either strongly or weakly. Results showed that endorsement of BJW-S was socially valued and had a greater effect on social utility judgments than it did on social desirability judgments. In contrast, the main effect of endorsement of BJW-O was to reduce the target’s social desirability. The results also showed that the effect of BJW-S on social utility is mediated by the target’s perceived individualism, whereas the effect of BJW-S and BJW-O on social desirability is mediated by the target’s perceived collectivism.


Sign in / Sign up

Export Citation Format

Share Document