Fire effects on the spatial patterns of soil resources in a Nicaraguan wet tropical forest

2005 ◽  
Vol 21 (4) ◽  
pp. 435-444 ◽  
Author(s):  
Brent C. Blair

Anthropogenic wildfires are becoming increasingly frequent in wet tropical forests. This trend follows that of other anthropogenic disturbances, which are now acute and widespread. Fires pose a potentially serious threat to tropical forests. However, little is known about the impact of unintended forest fires on below-ground resources in these ecosystems. This study investigated the influence of fires on the distribution and variability of soil resources on two sets of 50×50-m burned and unburned plots in a Nicaraguan rain forest. Samples were collected at 5-m intervals throughout each plot as well as subsamples at 50-cm intervals. Geostatistical techniques as well as univariate statistics were used to quantify the spatial autocorrelation and variability of selected nutrients (N, P and K), carbon and standing leaf litter. Most variability in this forest was spatially dependent at a scale of 30 m or less. However the average range of autocorrelations varied greatly between properties and sites. Burning altered soil heterogeneity by decreasing the range over which soil properties were autocorrelated. Overall the average patch size (range) for nitrogen was reduced by 7%, phosphorus by 52%, potassium by 60% and carbon by 43%. While phosphorus and leaf litter increased in the burned plots compared to unburned plots, potassium was not different. Nitrogen and carbon did not display a consistent pattern between burning regimes and this may be explained by variation in fire intensity. Leaf litter measurements did not correlate with measured soil nutrients within plots. Observed changes in the burned forest were likely a result of both the intensity of burning and change in vegetative cover between the time of the fires and soil sampling.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Libonati ◽  
J. M. C. Pereira ◽  
C. C. Da Camara ◽  
L. F. Peres ◽  
D. Oom ◽  
...  

AbstractBiomass burning in the Brazilian Amazon is modulated by climate factors, such as droughts, and by human factors, such as deforestation, and land management activities. The increase in forest fires during drought years has led to the hypothesis that fire activity decoupled from deforestation during the twenty-first century. However, assessment of the hypothesis relied on an incorrect active fire dataset, which led to an underestimation of the decreasing trend in fire activity and to an inflated rank for year 2015 in terms of active fire counts. The recent correction of that database warrants a reassessment of the relationships between deforestation and fire. Contrasting with earlier findings, we show that the exacerbating effect of drought on fire season severity did not increase from 2003 to 2015 and that the record-breaking dry conditions of 2015 had the least impact on fire season of all twenty-first century severe droughts. Overall, our results for the same period used in the study that originated the fire-deforestation decoupling hypothesis (2003–2015) show that decoupling was clearly weaker than initially proposed. Extension of the study period up to 2019, and novel analysis of trends in fire types and fire intensity strengthened this conclusion. Therefore, the role of deforestation as a driver of fire activity in the region should not be underestimated and must be taken into account when implementing measures to protect the Amazon forest.


2021 ◽  
Vol 4 ◽  
Author(s):  
Maximilian Hartung ◽  
Geovana Carreño-Rocabado ◽  
Marielos Peña-Claros ◽  
Masha T. van der Sande

Wildfires are becoming increasingly frequent and devastating in many tropical forests. Although seasonally dry tropical forests (SDTF) are among the most fire-threatened ecosystems, their long-term response to frequent wildfires remains largely unknown. This study is among the first to investigate the resilience in response to fire of the Chiquitano SDTF in Bolivia, a large ecoregion that has seen an unprecedented increase in fire intensity and frequency in recent years. We used remote sensing data to assess at a large regional and temporal scale (two decades) how fire frequency and environmental factors determine the resilience of the vegetation to fire disturbance. Resilience was measured as the resistance to fire damage and post-fire recovery. Both parameters were monitored for forested areas that burned once (F1), twice (F2), and three times (F3) between 2000 and 2010 and compared to unburned forests. Resistance and recovery were analyzed using time series of the Normalized Burn Ratio (NBR) index derived from Landsat satellite imagery, and climatic, topographic, and a human development-related variable used to evaluate their influence on resilience. The overall resilience was lowest in forests that burned twice and was higher in forests that burned three times, indicating a possible transition state in fire resilience, probably because forests become increasingly adapted during recurrent fires. Climatic variables, particularly rainfall, were most influential in determining resilience. Our results indicate that the Chiquitano dry forest is relatively resilient to recurring fires, has the capacity to recover and adapt, and that climatic differences are the main determinants of the spatial variation observed in resilience. Nevertheless, further research is needed to understand the effect of the higher frequency and intensity of fires expected in the future due to climate change and land use change, which may pose a greater threat to forest resilience.


2016 ◽  
Vol 16 (5) ◽  
pp. 3485-3497 ◽  
Author(s):  
Marcella Busilacchio ◽  
Piero Di Carlo ◽  
Eleonora Aruffo ◽  
Fabio Biancofiore ◽  
Cesare Dari Salisburgo ◽  
...  

Abstract. The observations collected during the BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3) and total peroxy nitrates ∑PNs, ∑ROONO2). The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of  ∑PNs, a long-lived NOx reservoir whose concentration is supposed to be impacted by biomass burning emissions. In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of concentrations of ∑PNs, whereas minimal increase of the concentrations of O3 and NO2 is observed. The ∑PN and O3 productions have been calculated using the rate constants of the first- and second-order reactions of volatile organic compound (VOC) oxidation. The ∑PN and O3 productions have also been quantified by 0-D model simulation based on the Master Chemical Mechanism. Both methods show that in fire plumes the average production of ∑PNs and O3 are greater than in the background plumes, but the increase of ∑PN production is more pronounced than the O3 production. The average ∑PN production in fire plumes is from 7 to 12 times greater than in the background, whereas the average O3 production in fire plumes is from 2 to 5 times greater than in the background. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign, fire emissions impact both the oxidized NOy and O3,  but (1 ∑PN production is amplified significantly more than O3 production and (2) in the forest fire plumes the ratio between the O3 production and the ∑PN production is lower than the ratio evaluated in the background air masses, thus confirming that the role played by the ∑PNs produced during biomass burning is significant in the O3 budget. The implication of these observations is that fire emissions in some cases, for example boreal forest fires and in the conditions reported here, may influence more long-lived precursors of O3 than short-lived pollutants, which in turn can be transported and eventually diluted in a wide area.


2018 ◽  
Vol 209 ◽  
pp. 00021
Author(s):  
Valeriy Perminov ◽  
Victoria Marzaeva

The protection of buildings and structures in a community from destruction by forest fires is a very important concern. This paper addresses the development of a mathematical model for fires in the wildland-urban intermix. The forest fire is a very complicated phenomenon. At present, fire services can forecast the danger rating of, or the specific weather elements relating to, forest fire. There is need to understand and predict forest fire initiation, behavior and impact of fire on the buildings and constructions. This paper’s purposes are the improvement of knowledge on the fundamental physical mechanisms that control forest fire behavior. The mathematical modeling of forest fires actions on buildings and structures has been carried out to study the effects of fire intensity and wind speed on possibility of ignition of buildings.


Fire ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 56
Author(s):  
Raquel Partelli-Feltrin ◽  
Daniel M. Johnson ◽  
Aaron M. Sparks ◽  
Henry D. Adams ◽  
Crystal A. Kolden ◽  
...  

The combination of drought and fire can cause drastic changes in forest composition and structure. Given the predictions of more frequent and severe droughts and forecasted increases in fire size and intensity in the western United States, we assessed the impact of drought and different fire intensities on Pinus ponderosa saplings. In a controlled combustion laboratory, we exposed saplings to surface fires at two different fire intensity levels (quantified via fire radiative energy; units: MJ m−2). The recovery (photosynthesis and bud development) and mortality of saplings were monitored during the first month, and at 200- and 370-days post-fire. All the saplings subjected to high intensity surface fires (1.4 MJ m−2), regardless of the pre-fire water status, died. Seventy percent of pre-fire well-watered saplings recovered after exposure to low intensity surface fire (0.7 MJ m−2). All of the pre-fire drought-stressed saplings died, even at the lower fire intensity. Regardless of the fire intensity and water status, photosynthesis was significantly reduced in all saplings exposed to fire. At 370 days post-fire, burned well-watered saplings that recovered had similar photosynthesis rates as unburned plants. In addition, all plants that recovered or attempted to recover produced new foliage within 35 days following the fire treatments. Our results demonstrate that the pre-fire water status of saplings is an important driver of Pinus ponderosa sapling recovery and mortality after fire.


2021 ◽  
Vol 83 (11) ◽  
Author(s):  
Alanna Hoyer-Leitzel ◽  
Sarah Iams

AbstractSavanna ecosystems are shaped by the frequency and intensity of regular fires. We model savannas via an ordinary differential equation (ODE) encoding a one-sided inhibitory Lotka–Volterra interaction between trees and grass. By applying fire as a discrete disturbance, we create an impulsive dynamical system that allows us to identify the impact of variation in fire frequency and intensity. The model exhibits three different bistability regimes: between savanna and grassland; two savanna states; and savanna and woodland. The impulsive model reveals rich bifurcation structures in response to changes in fire intensity and frequency—structures that are largely invisible to analogous ODE models with continuous fire. In addition, by using the amount of grass as an example of a socially valued function of the system state, we examine the resilience of the social value to different disturbance regimes. We find that large transitions (“tipping”) in the valued quantity can be triggered by small changes in disturbance regime.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170312 ◽  
Author(s):  
Kieran Withey ◽  
Erika Berenguer ◽  
Alessandro Ferraz Palmeira ◽  
Fernando D. B. Espírito-Santo ◽  
Gareth D. Lennox ◽  
...  

Wildfires produce substantial CO 2 emissions in the humid tropics during El Niño-mediated extreme droughts, and these emissions are expected to increase in coming decades. Immediate carbon emissions from uncontrolled wildfires in human-modified tropical forests can be considerable owing to high necromass fuel loads. Yet, data on necromass combustion during wildfires are severely lacking. Here, we evaluated necromass carbon stocks before and after the 2015–2016 El Niño in Amazonian forests distributed along a gradient of prior human disturbance. We then used Landsat-derived burn scars to extrapolate regional immediate wildfire CO 2 emissions during the 2015–2016 El Niño. Before the El Niño, necromass stocks varied significantly with respect to prior disturbance and were largest in undisturbed primary forests (30.2 ± 2.1 Mg ha −1 , mean ± s.e.) and smallest in secondary forests (15.6 ± 3.0 Mg ha −1 ). However, neither prior disturbance nor our proxy of fire intensity (median char height) explained necromass losses due to wildfires. In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary (disturbed and undisturbed) and 20 000 ha of secondary forest burned during the 2015–2016 El Niño. Covering less than 0.2% of Brazilian Amazonia, these wildfires resulted in expected immediate CO 2 emissions of approximately 30 Tg, three to four times greater than comparable estimates from global fire emissions databases. Uncontrolled understorey wildfires in humid tropical forests during extreme droughts are a large and poorly quantified source of CO 2 emissions. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Chen ◽  
Shukui Niu ◽  
Xiaojuan Tong ◽  
Jinlong Zhao ◽  
Yu Sun ◽  
...  

The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982–1988 and 1989–2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I–III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.


2013 ◽  
Vol 14 (3) ◽  
pp. 294-302 ◽  

Floods are natural disasters that pose a direct threat to human life and often cause significant economic loss. River floods are caused by heavy and/or prolonged rainfall, causing rivers and streams to overflow and sometimes also burst dams or levees. Forest fires increase the risk factor to which humans and properties are exposed during flood events, by intensifying and accelerating the peak volume of the overflow water. Wildfires alter significantly the geomorphological characteristics of a river basin, thus affecting both directly and indirectly its hydrological behavior. A forest fire, followed by a rainfall event, may cause a significant flood downstream. This paper presents a hydrological analysis of the eastern Attica region, which is performed both prior to and after forest fire events, in order to assess the change in the consequent flood risk. The study area is the eastern part of the greater Athens area in Attica (Greece). This is a peri-urban area experiencing rapid urban growth, and its hydrometeorological conditions are being monitored though a dense hydrometeorological network for the past 10 years. A fire model is set up to simulate the characteristics of the development of three hypothetical fire events of low, medium and high severity accordingly. The parameters that affect fire intensity and rate of spread (e.g. topographic factors such as slope steepness, elevation, aspect, and configuration of land) are taken into consideration and the temporal and spatial distribution of a forest fire is studied. Of additional interest in this study is the fact that a recent forest fire event devastated a significant part of its northern, mountainous area and the consequences of this event are further examined. A detailed simulation of the three hypothetical fire scenarios and the real fire event is performed and the outcomes of the analysis are used as an input in a rainfall – runoff model that allows for an enhanced hydrological study of the affected area. Land use changes and geomorphological and hydrological alterations as a result of the fire event are taken into consideration during a post-fire hydrological analysis, which eventually demonstrates the impact of fire on the hydrological response of the study area. This impact is assessed by means of application of a methodological framework for the estimation of post-fire values for three hydrological parameters (CN, initial abstraction and lag time) and the paper concludes that the fire impact has rendered the downstream areas more prone to floods.


2014 ◽  
Vol 6 (2) ◽  
pp. 887-897 ◽  
Author(s):  
Manoj Kumar Jhariya ◽  
Abhishek Raj

Fire is one of the most destructive threats faced by our forests. Fire is good servant but a bad master. The fire season starts in March/April continues up to June. Wildfires destroy not only flora (tree, herbs, grassland, forbs, etc.) and their diversity but also considerable long term negative impact on fauna including wild endangered species. Repeated fires can convert some shrub-lands to grass and fire exclusion converts some grassland to shrub-land and forest. Fires affect animals mainly through effects on their habitat. The extent of fire effects on animal communities generally depends on the extent of change in habitat structure and species composition caused by fire. Fire can also influence a physico-chemical property of soil including texture, color, bulk density, pH, porosity, organic matter, nutrient availability and soil biota. Drought, disease, insect infestation, overgrazing or a combination of these factors mayincrease the impact of fire on an individual plant species or communities. Common effects include plant mortality, increase flowering, seed production and numerous communal affects. Fire affected area showed reduction in species diversity both in flora and fauna. In a social context, fire directly affects people, property and infrastructure, thereby directly affecting the health and livelihood of individuals and communities.


Sign in / Sign up

Export Citation Format

Share Document