scholarly journals Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models

Author(s):  
Girindra Wardhana ◽  
Hamid Naghibi ◽  
Beril Sirmacek ◽  
Momen Abayazid

Abstract Purpose We investigated the parameter configuration in the automatic liver and tumor segmentation using a convolutional neural network based on 2.5D model. The implementation of 2.5D model shows promising results since it allows the network to have a deeper and wider network architecture while still accommodates the 3D information. However, there has been no detailed investigation of the parameter configurations on this type of network model. Methods Some parameters, such as the number of stacked layers, image contrast, and the number of network layers, were studied and implemented on neural networks based on 2.5D model. Networks are trained and tested by utilizing the dataset from liver and tumor segmentation challenge (LiTS). The network performance was further evaluated by comparing the network segmentation with manual segmentation from nine technical physicians and an experienced radiologist. Results Slice arrangement testing shows that multiple stacked layers have better performance than a single-layer network. However, the dice scores start decreasing when the number of stacked layers is more than three layers. Adding higher number of layers would cause overfitting on the training set. In contrast enhancement test, implementing contrast enhancement method did not show a statistically significant different to the network performance. While in the network layer test, adding more layers to the network architecture does not always correspond to the increasing dice score result of the network. Conclusions This paper compares the performance of the network based on 2.5D model using different parameter configurations. The result obtained shows the effect of each parameter and allow the selection of the best configuration in order to improve the network performance in the application of automatic liver and tumor segmentation.

2021 ◽  
Vol 15 ◽  
Author(s):  
Lixing Huang ◽  
Jietao Diao ◽  
Hongshan Nie ◽  
Wei Wang ◽  
Zhiwei Li ◽  
...  

The memristor-based convolutional neural network (CNN) gives full play to the advantages of memristive devices, such as low power consumption, high integration density, and strong network recognition capability. Consequently, it is very suitable for building a wearable embedded application system and has broad application prospects in image classification, speech recognition, and other fields. However, limited by the manufacturing process of memristive devices, high-precision weight devices are currently difficult to be applied in large-scale. In the same time, high-precision neuron activation function also further increases the complexity of network hardware implementation. In response to this, this paper proposes a configurable full-binary convolutional neural network (CFB-CNN) architecture, whose inputs, weights, and neurons are all binary values. The neurons are proportionally configured to two modes for different non-ideal situations. The architecture performance is verified based on the MNIST data set, and the influence of device yield and resistance fluctuations under different neuron configurations on network performance is also analyzed. The results show that the recognition accuracy of the 2-layer network is about 98.2%. When the yield rate is about 64% and the hidden neuron mode is configured as −1 and +1, namely ±1 MD, the CFB-CNN architecture achieves about 91.28% recognition accuracy. Whereas the resistance variation is about 26% and the hidden neuron mode configuration is 0 and 1, namely 01 MD, the CFB-CNN architecture gains about 93.43% recognition accuracy. Furthermore, memristors have been demonstrated as one of the most promising devices in neuromorphic computing for its synaptic plasticity. Therefore, the CFB-CNN architecture based on memristor is SNN-compatible, which is verified using the number of pulses to encode pixel values in this paper.


2021 ◽  
Author(s):  
Lachlan D Barnes ◽  
Kevin Lee ◽  
Andreas W Kempa-Liehr ◽  
Luke E Hallum

AbstractSleep apnea (SA) is a common disorder involving the cessation of breathing during sleep. It can cause daytime hypersomnia, accidents, and, if allowed to progress, serious, chronic conditions. Continuous positive airway pressure is an effective SA treatment. However, long waitlists impede timely diagnosis; overnight sleep studies involve trained technicians scoring a polysomnograph, which comprises multiple physiological signals including multi-channel electroencephalography (EEG). Therefore, it is important to develop simplified and automated approaches to detect SA. We have developed an explainable convolutional neural network (CNN) to detect SA from single-channel EEG recordings which generalizes across subjects. The network architecture consisted of three convolutional layers. We tuned hyperparameters using the Hyperband algorithm, optimized parameters using Adam, and quantified network performance with subjectwise 10-fold cross-validation. Our CNN performed with an accuracy of 76.7% and a Matthews correlation coefficient (MCC) of 0.54. This performance was reliably above the conservative baselines of 50% (accuracy) and 0.0 (MCC). To explain the mechanisms of our trained network, we used critical-band masking (CBM): after training, we added bandlimited noise to test recordings; we parametrically varied the noise band center frequency and noise intensity, quantifying the deleterious effect on performance. We reconciled the effects of CBM with lesioning, wherein we zeroed the trained network’s 1st-layer filter kernels in turn, quantifying the deleterious effect on performance. These analyses indicated that the network learned frequency-band information consistent with known SA biomarkers, specifically, delta and beta band activity. Our results indicate single-channel EEG may have clinical potential for SA diagnosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohamadreza Hajiabadi ◽  
Behrouz Alizadeh Savareh ◽  
Hassan Emami ◽  
Azadeh Bashiri

Abstract Introduction and goal to background Due to the importance of segmentation of MRI images in identifying brain tumors, various methods including deep learning have been introduced for automatic brain tumor segmentation. On the other hand, using a combination of methods can improve their performance. Among them is the use of wavelet transform as an auxiliary element in deep networks. The analysis of the requirements of such combinations has been addressed in this study. Method In this developmental study, different wavelet functions were used to compress brain MRI images and finally as an auxiliary element in improving the performance of the convolutional neural network in brain tumor segmentation. Results Based on the results of the tests performed, the Daubechies1 function was most effective in enhancing network performance in segmenting MRI images and was able to balance the performance and computational overload. Conclusion Choosing the wavelet function to optimize the performance of a convolutional neural network should be based on the requirements of the problem, also taking into account some considerations such as computational load, processing time, and performance of the wavelet function in optimizing CNN output in the intended task.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2021 ◽  
Vol 11 (9) ◽  
pp. 4292
Author(s):  
Mónica Y. Moreno-Revelo ◽  
Lorena Guachi-Guachi ◽  
Juan Bernardo Gómez-Mendoza ◽  
Javier Revelo-Fuelagán ◽  
Diego H. Peluffo-Ordóñez

Automatic crop identification and monitoring is a key element in enhancing food production processes as well as diminishing the related environmental impact. Although several efficient deep learning techniques have emerged in the field of multispectral imagery analysis, the crop classification problem still needs more accurate solutions. This work introduces a competitive methodology for crop classification from multispectral satellite imagery mainly using an enhanced 2D convolutional neural network (2D-CNN) designed at a smaller-scale architecture, as well as a novel post-processing step. The proposed methodology contains four steps: image stacking, patch extraction, classification model design (based on a 2D-CNN architecture), and post-processing. First, the images are stacked to increase the number of features. Second, the input images are split into patches and fed into the 2D-CNN model. Then, the 2D-CNN model is constructed within a small-scale framework, and properly trained to recognize 10 different types of crops. Finally, a post-processing step is performed in order to reduce the classification error caused by lower-spatial-resolution images. Experiments were carried over the so-named Campo Verde database, which consists of a set of satellite images captured by Landsat and Sentinel satellites from the municipality of Campo Verde, Brazil. In contrast to the maximum accuracy values reached by remarkable works reported in the literature (amounting to an overall accuracy of about 81%, a f1 score of 75.89%, and average accuracy of 73.35%), the proposed methodology achieves a competitive overall accuracy of 81.20%, a f1 score of 75.89%, and an average accuracy of 88.72% when classifying 10 different crops, while ensuring an adequate trade-off between the number of multiply-accumulate operations (MACs) and accuracy. Furthermore, given its ability to effectively classify patches from two image sequences, this methodology may result appealing for other real-world applications, such as the classification of urban materials.


2012 ◽  
Vol 198-199 ◽  
pp. 1783-1788
Author(s):  
Jun Ting Lin ◽  
Jian Wu Dang

As a dedicated digital mobile communication system designed for railway application, GSM-R must provide reliable bidirectional channel for transmitting security data between trackside equipments and on-train computer on high-speed railways. To ensure the safety of running trains, redundant network architecture is commonly used to guarantee the reliability of GSM-R. Because of the rigid demands of railway security, it is important to build reliability mathematical models, predict the network reliability and select a suitable one. Two common GSM-R wireless architectures, co-sited double layers network and intercross single layer network, are modeled and contrasted in this paper. By calculating the reliabilities of each reliable model, it is clear that more redundant the architecture is, more reliable the system will be, the whole system will bear a less failure time per year as the benefit. Meanwhile, as the redundancy of GSM-R system raises, its equipment and maintenance will cost much, but the reliability raise gently. From the standpoint of transmission system interruption and network equipment failure, the reliability of co-sited double layer network architecture is higher than the intercross single layer one, while the viability and cost of the intercross redundant network is better than co-sited one in natural disasters such as flood and lightning. Taking fully into account reliability, viability and cost, we suggest that intercross redundant network should be chosen on high-speed railway.


Sign in / Sign up

Export Citation Format

Share Document