scholarly journals Memristor Based Binary Convolutional Neural Network Architecture With Configurable Neurons

2021 ◽  
Vol 15 ◽  
Author(s):  
Lixing Huang ◽  
Jietao Diao ◽  
Hongshan Nie ◽  
Wei Wang ◽  
Zhiwei Li ◽  
...  

The memristor-based convolutional neural network (CNN) gives full play to the advantages of memristive devices, such as low power consumption, high integration density, and strong network recognition capability. Consequently, it is very suitable for building a wearable embedded application system and has broad application prospects in image classification, speech recognition, and other fields. However, limited by the manufacturing process of memristive devices, high-precision weight devices are currently difficult to be applied in large-scale. In the same time, high-precision neuron activation function also further increases the complexity of network hardware implementation. In response to this, this paper proposes a configurable full-binary convolutional neural network (CFB-CNN) architecture, whose inputs, weights, and neurons are all binary values. The neurons are proportionally configured to two modes for different non-ideal situations. The architecture performance is verified based on the MNIST data set, and the influence of device yield and resistance fluctuations under different neuron configurations on network performance is also analyzed. The results show that the recognition accuracy of the 2-layer network is about 98.2%. When the yield rate is about 64% and the hidden neuron mode is configured as −1 and +1, namely ±1 MD, the CFB-CNN architecture achieves about 91.28% recognition accuracy. Whereas the resistance variation is about 26% and the hidden neuron mode configuration is 0 and 1, namely 01 MD, the CFB-CNN architecture gains about 93.43% recognition accuracy. Furthermore, memristors have been demonstrated as one of the most promising devices in neuromorphic computing for its synaptic plasticity. Therefore, the CFB-CNN architecture based on memristor is SNN-compatible, which is verified using the number of pulses to encode pixel values in this paper.

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Content-Based Image Retrieval (CBIR) is extensively used technique for image retrieval from large image databases. However, users are not satisfied with the conventional image retrieval techniques. In addition, the advent of web development and transmission networks, the number of images available to users continues to increase. Therefore, a permanent and considerable digital image production in many areas takes place. Quick access to the similar images of a given query image from this extensive collection of images pose great challenges and require proficient techniques. From query by image to retrieval of relevant images, CBIR has key phases such as feature extraction, similarity measurement, and retrieval of relevant images. However, extracting the features of the images is one of the important steps. Recently Convolutional Neural Network (CNN) shows good results in the field of computer vision due to the ability of feature extraction from the images. Alex Net is a classical Deep CNN for image feature extraction. We have modified the Alex Net Architecture with a few changes and proposed a novel framework to improve its ability for feature extraction and for similarity measurement. The proposal approach optimizes Alex Net in the aspect of pooling layer. In particular, average pooling is replaced by max-avg pooling and the non-linear activation function Maxout is used after every Convolution layer for better feature extraction. This paper introduces CNN for features extraction from images in CBIR system and also presents Euclidean distance along with the Comprehensive Values for better results. The proposed framework goes beyond image retrieval, including the large-scale database. The performance of the proposed work is evaluated using precision. The proposed work show better results than existing works.


Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yinjie Xie ◽  
Wenxin Dai ◽  
Zhenxin Hu ◽  
Yijing Liu ◽  
Chuan Li ◽  
...  

Among many improved convolutional neural network (CNN) architectures in the optical image classification, only a few were applied in synthetic aperture radar (SAR) automatic target recognition (ATR). One main reason is that direct transfer of these advanced architectures for the optical images to the SAR images easily yields overfitting due to its limited data set and less features relative to the optical images. Thus, based on the characteristics of the SAR image, we proposed a novel deep convolutional neural network architecture named umbrella. Its framework consists of two alternate CNN-layer blocks. One block is a fusion of six 3-layer paths, which is used to extract diverse level features from different convolution layers. The other block is composed of convolution layers and pooling layers are mainly utilized to reduce dimensions and extract hierarchical feature information. The combination of the two blocks could extract rich features from different spatial scale and simultaneously alleviate overfitting. The performance of the umbrella model was validated by the Moving and Stationary Target Acquisition and Recognition (MSTAR) benchmark data set. This architecture could achieve higher than 99% accuracy for the classification of 10-class targets and higher than 96% accuracy for the classification of 8 variants of the T72 tank, even in the case of diverse positions located by targets. The accuracy of our umbrella is superior to the current networks applied in the classification of MSTAR. The result shows that the umbrella architecture possesses a very robust generalization capability and will be potential for SAR-ART.


2021 ◽  
Author(s):  
Lachlan D Barnes ◽  
Kevin Lee ◽  
Andreas W Kempa-Liehr ◽  
Luke E Hallum

AbstractSleep apnea (SA) is a common disorder involving the cessation of breathing during sleep. It can cause daytime hypersomnia, accidents, and, if allowed to progress, serious, chronic conditions. Continuous positive airway pressure is an effective SA treatment. However, long waitlists impede timely diagnosis; overnight sleep studies involve trained technicians scoring a polysomnograph, which comprises multiple physiological signals including multi-channel electroencephalography (EEG). Therefore, it is important to develop simplified and automated approaches to detect SA. We have developed an explainable convolutional neural network (CNN) to detect SA from single-channel EEG recordings which generalizes across subjects. The network architecture consisted of three convolutional layers. We tuned hyperparameters using the Hyperband algorithm, optimized parameters using Adam, and quantified network performance with subjectwise 10-fold cross-validation. Our CNN performed with an accuracy of 76.7% and a Matthews correlation coefficient (MCC) of 0.54. This performance was reliably above the conservative baselines of 50% (accuracy) and 0.0 (MCC). To explain the mechanisms of our trained network, we used critical-band masking (CBM): after training, we added bandlimited noise to test recordings; we parametrically varied the noise band center frequency and noise intensity, quantifying the deleterious effect on performance. We reconciled the effects of CBM with lesioning, wherein we zeroed the trained network’s 1st-layer filter kernels in turn, quantifying the deleterious effect on performance. These analyses indicated that the network learned frequency-band information consistent with known SA biomarkers, specifically, delta and beta band activity. Our results indicate single-channel EEG may have clinical potential for SA diagnosis.


2021 ◽  
Vol 502 (3) ◽  
pp. 3200-3209
Author(s):  
Young-Soo Jo ◽  
Yeon-Ju Choi ◽  
Min-Gi Kim ◽  
Chang-Ho Woo ◽  
Kyoung-Wook Min ◽  
...  

ABSTRACT We constructed a far-ultraviolet (FUV) all-sky map based on observations from the Far Ultraviolet Imaging Spectrograph (FIMS) aboard the Korean microsatellite Science and Technology SATellite-1. For the ${\sim}20{{\ \rm per\ cent}}$ of the sky not covered by FIMS observations, predictions from a deep artificial neural network were used. Seven data sets were chosen for input parameters, including five all-sky maps of H α, E(B − V), N(H i), and two X-ray bands, with Galactic longitudes and latitudes. 70 ${{\ \rm per\ cent}}$ of the pixels of the observed FIMS data set were randomly selected for training as target parameters and the remaining 30 ${{\ \rm per\ cent}}$ were used for validation. A simple four-layer neural network architecture, which consisted of three convolution layers and a dense layer at the end, was adopted, with an individual activation function for each convolution layer; each convolution layer was followed by a dropout layer. The predicted FUV intensities exhibited good agreement with Galaxy Evolution Explorer observations made in a similar FUV wavelength band for high Galactic latitudes. As a sample application of the constructed map, a dust scattering simulation was conducted with model optical parameters and a Galactic dust model for a region that included observed and predicted pixels. Overall, FUV intensities in the observed and predicted regions were reproduced well.


Author(s):  
Girindra Wardhana ◽  
Hamid Naghibi ◽  
Beril Sirmacek ◽  
Momen Abayazid

Abstract Purpose We investigated the parameter configuration in the automatic liver and tumor segmentation using a convolutional neural network based on 2.5D model. The implementation of 2.5D model shows promising results since it allows the network to have a deeper and wider network architecture while still accommodates the 3D information. However, there has been no detailed investigation of the parameter configurations on this type of network model. Methods Some parameters, such as the number of stacked layers, image contrast, and the number of network layers, were studied and implemented on neural networks based on 2.5D model. Networks are trained and tested by utilizing the dataset from liver and tumor segmentation challenge (LiTS). The network performance was further evaluated by comparing the network segmentation with manual segmentation from nine technical physicians and an experienced radiologist. Results Slice arrangement testing shows that multiple stacked layers have better performance than a single-layer network. However, the dice scores start decreasing when the number of stacked layers is more than three layers. Adding higher number of layers would cause overfitting on the training set. In contrast enhancement test, implementing contrast enhancement method did not show a statistically significant different to the network performance. While in the network layer test, adding more layers to the network architecture does not always correspond to the increasing dice score result of the network. Conclusions This paper compares the performance of the network based on 2.5D model using different parameter configurations. The result obtained shows the effect of each parameter and allow the selection of the best configuration in order to improve the network performance in the application of automatic liver and tumor segmentation.


2021 ◽  
Vol 22 (8) ◽  
pp. 4023
Author(s):  
Huimin Shen ◽  
Youzhi Zhang ◽  
Chunhou Zheng ◽  
Bing Wang ◽  
Peng Chen

Accurate prediction of binding affinity between protein and ligand is a very important step in the field of drug discovery. Although there are many methods based on different assumptions and rules do exist, prediction performance of protein–ligand binding affinity is not satisfactory so far. This paper proposes a new cascade graph-based convolutional neural network architecture by dealing with non-Euclidean irregular data. We represent the molecule as a graph, and use a simple linear transformation to deal with the sparsity problem of the one-hot encoding of original data. The first stage adopts ARMA graph convolutional neural network to learn the characteristics of atomic space in the protein–ligand complex. In the second stage, one variant of the MPNN graph convolutional neural network is introduced with chemical bond information and interactive atomic features. Finally, the architecture passes through the global add pool and the fully connected layer, and outputs a constant value as the predicted binding affinity. Experiments on the PDBbind v2016 data set showed that our method is better than most of the current methods. Our method is also comparable to the state-of-the-art method on the data set, and is more intuitive and simple.


2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094434
Author(s):  
Jingbo Chen ◽  
Shengyong Chen ◽  
Linjie Bian

Many pieces of information are included in the front region of a vehicle, especially in windshield and bumper regions. Thus, windshield or bumper region detection is making sense to extract useful information. But the existing windshield and bumper detection methods based on traditional artificial features are not robust enough. Those features may become invalid in many real situations (e.g. occlude, illumination change, viewpoint change.). In this article, we propose a multi-attribute-guided vehicle discriminately region detection method based on convolutional neural network and not rely on bounding box regression. We separate the net into two branches, respectively, for identification (ID) and Model attributes training. Therefore, the feature spaces of different attributes become more independent. Additionally, we embed a self-attention block into our framework to improve the performance of local region detection. We train our model on PKU_VD data set which has a huge number of images inside. Furthermore, we labeled the handcrafted bounding boxes on 5000 randomly picked testing images, and 1020 of them are used for evaluation and 3980 as the training data for YOLOv3. We use Intersection over Union for quantitative evaluation. Experiments were conducted in three different latest convolutional neural network trunks to illustrate the detection performance of the proposed method. Simultaneously, in terms of quantitative evaluation, the performance of our method is close to YOLOv3 even without handcrafted bounding boxes.


Sign in / Sign up

Export Citation Format

Share Document