Nucleoporin 37 promotes the cell proliferation, migration, and invasion of gastric cancer through activating the PI3K/AKT/mTOR signaling pathway

Author(s):  
Jishui Zhang ◽  
Wenhao Lv ◽  
Yagang Liu ◽  
Weihua Fu ◽  
Baosheng Chen ◽  
...  
2020 ◽  
Author(s):  
Rui Su ◽  
Enhong Zhao ◽  
Jun Zhang

Abstract MiRNA operates as a tumor suppressor or carcinogen to regulate cell proliferation, metastasis, invasion, differentiation, apoptosis and metabolic process. In the present research, we investigated the effect and mechanism of miR496 in human gastric cancer cells. Cell proliferation was measured by CCK8 and clonogenic assay. Transwell test was performed to detect cell migration and invasion. Flow cytometry analysis was used to evaluate cell apoptosis. Bioinformatics software targetscan was used for the screening of miR-496’s target gene. MiR-496 was down regulated in three gastric cancer cell lines, SGC-790, AGS and MKN45 compared with normal gastric epithelial cell line GES-1. MiR-496 mimics inhibited the proliferation of AGS cells after the transfection for 48 h and 72 h. The migration and invasion of AGS cells were also inhibited by the transfection of miR-496 mimics. In addition, miR-496 mimics induced the apoptosis through up regulating the levels of Bax and Active Caspase3 and down regulating the levels of Bcl-2 and Total Caspase3. Bioinformatics analysis showed that there was a binding site between miR-496 and LYN kinase (LYN). MiR-496 mimics could inhibit the expression of LYN in AGS cells. The overexpression of LYN blocked the inhibition of tumor cell growth, as well as the inhibition of AKT/mTOR signaling pathway induced by miR-496 in gastric cancer cells. In conclusion, miR-496 inhibited the proliferation through the AKT/mTOR signaling pathway via targeting LYN in gastric cancer cells. Our research provides a new potential target for clinical diagnosis and targeted treatment of gastric cancer.


2018 ◽  
Vol 32 ◽  
pp. 205873841881434 ◽  
Author(s):  
Genglong Zhu ◽  
Xialei Liu ◽  
Haijing Li ◽  
Yang Yan ◽  
Xiaopeng Hong ◽  
...  

Liver cancer is one of the most common and lethal cancers in human digestive system, which kills more than half a million people every year worldwide. This study aimed to investigate the effects of kaempferol, a flavonoid compound isolated from vegetables and fruits, on hepatic cancer HepG2 cell proliferation, migration, invasion, and apoptosis, as well as microRNA-21 (miR-21) expression. Cell viability was detected using cell counting kit-8 (CCK-8) assay. Cell proliferation was measured using 5-bromo-2′-deoxyuridine (BrdU) incorporation assay. Cell apoptosis was assessed using Guava Nexin assay. Cell migration and invasion were determined using two-chamber migration (invasion) assay. Cell transfection was used to change the expression of miR-21. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyze the expressions of miR-21 and phosphatase and tensin homologue (PTEN). Expression of key proteins involved in proliferation, apoptosis, migration, invasion, and phosphatidylinositol 3-kinase/protein kinase 3/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway were evaluated using western blotting. Results showed that kaempferol significantly inhibited HepG2 cell proliferation, migration, and invasion, and induced cell apoptosis. Kaempferol remarkably reduce the expression of miR-21 in HepG2 cells. Overexpression of miR-21 obviously reversed the effects of kaempferol on HepG2 cell proliferation, migration, invasion, and apoptosis. Moreover, miR-21 negatively regulated the expression of PTEN in HepG2 cells. Kaempferol enhanced the expression of PTEN and inactivated PI3K/AKT/mTOR signaling pathway in HepG2 cells. In conclusion, kaempferol inhibited proliferation, migration, and invasion of HepG2 cells by down-regulating miR-21 and up-regulating PTEN, as well as inactivating PI3K/AKT/mTOR signaling pathway.


2020 ◽  
Vol 15 (1) ◽  
pp. 400-408
Author(s):  
Xin You ◽  
Hongyan Cui ◽  
Ning Yu ◽  
Qiuli Li

AbstractPreeclampsia (PE) is a serious disease during pregnancy associated with the dysfunction of trophoblast cell invasion. DDX46 is a kind of RNA helicase that has been found to regulate cancer cell metastasis. However, the role of DDX46 in PE remains unclear. Our results showed that the mRNA levels of DDX46 in placental tissues of pregnant women with PE were markedly lower than those in normal pregnancies. Loss-of-function assays showed that knockdown of DDX46 significantly suppressed cell proliferation of trophoblast cells. Besides, DDX46 knockdown decreased trophoblast cell migration and invasion capacity. In contrast, the overexpression of DDX46 promoted the migration and invasion of trophoblast cells. Furthermore, knockdown of DDX46 caused significant decrease in the levels of p-PI3K, p-Akt, and p-mTOR in HTR-8/SVneo cells. In addition, treatment with IGF-1 reversed the inhibitory effects of DDX46 knockdown on proliferation, migration, and invasion of HTR-8/SVneo cells. In conclusion, these data suggest that DDX46 might be involved in the progression of PE, which might be attributed to the regulation of PI3K/Akt/mTOR signaling pathway. Thus, DDX46 might serve as a therapeutic target for the treatment of PE.


2020 ◽  
Vol 12 ◽  
pp. 175883592093789
Author(s):  
Qiqin Song ◽  
Hongyue Zhang ◽  
Jinan He ◽  
Hongyan Kong ◽  
Ran Tao ◽  
...  

Background: Long non-coding RNAs have suppressive or oncogenic effects in various types of cancers by serving as competing endogenous RNAs for specific microRNAs. In the present study, we aim to delineate the underlying mechanism by which the LINC00473/miR-29a-3p/Robo1 axis affects cell proliferation, migration, invasion, and metastasis in hepatocellular carcinoma (HCC). Methods: The level of Robo1 was examined in HCC tissues and cells, along with its regulatory effects on proliferation, migration, and invasion of HCC cells. Afterwards, the possible involvement of the PI3K/AKT/mTOR signaling pathway was determined. Next, miR-29a-3p expression was overexpressed or inhibited to investigate its regulatory role on HCC cell activities. The interaction among miR-29a-3p, Robo1, and LINC00473 was further characterized. Finally, a xenograft tumor in nude mice was conducted to measure tumorigenesis and metastasis in vivo. Results: miR-29a-3p was downregulated while Robo1 was upregulated in HCC tissues and cells. miR-29a-3p targeted Robo1 and negatively regulated its expression. In response to miR-29a-3p overexpression, Robo1 silencing or LINC00473 silencing, HCC cell proliferation, migration, invasion, tumor progression, and metastasis were impeded, which was involved with the inactivation of the PI3K/AKT/mTOR signaling pathway. Notably, LINC00473 could competitively bind to miR-29a-3p to upregulate Robo1 expression. Conclusion: LINC00473 might be involved in HCC progression by acting as a miR-29a-3p sponge to upregulate the expression of Robo1 that activates the PI3K/AKT/mTOR signaling pathway, which leads to enhanced cell proliferation, migration, invasion, tumor progression, and metastasis in HCC.


Sign in / Sign up

Export Citation Format

Share Document