Phase field and room-temperature mechanical properties of the C15 laves phase in the Zr-Ta-Cr alloy system

2005 ◽  
Vol 36 (3) ◽  
pp. 583-590 ◽  
Author(s):  
T. Ohta ◽  
Y. Kaneno ◽  
H. Inoue ◽  
T. Takasugi ◽  
S. Hanada
Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6076
Author(s):  
Ladislav Falat ◽  
Lucia Čiripová ◽  
Viera Homolová ◽  
Miroslav Džupon ◽  
Róbert Džunda ◽  
...  

In this work, the effects of various conditions of short-term rejuvenation heat treatment on room-temperature mechanical properties of long-term aged P92 boiler steel were investigated. Normalized and tempered P92 steel pipe was thermally exposed at 600 °C for time durations up to 5000 h in order to simulate high-temperature material degradation, as also occurring in service conditions. Thus, thermally embrittled material states of P92 steel were prepared, showing tempered martensitic microstructures with coarsened secondary phase precipitates of Cr23C6-based carbides and Fe2W-based Laves phase. Compared with the initial normalized and tempered material condition, thermally aged materials exhibited a slight decrease in strength properties (i.e., yield stress and ultimate tensile strength) and deformation properties (i.e., total elongation and reduction of area). The hardness values were almost unaffected, whereas the impact toughness values showed a steep decrease after long-term ageing. An idea for designing the rejuvenation heat treatments for restoration of impact toughness was based on tuning the material properties by short-term annealing effects at various selected temperatures somewhat above the long-term ageing temperature of P92 material. Specifically, the proposed heat treatments were performed within the temperature range between 680 °C and 740 °C, employing variable heating up and cooling down conditions. It was revealed that short-term annealing at 740 °C for 1 h with subsequent rapid cooling into water represents the most efficient rejuvenation heat treatment procedure of thermally aged P92 steel for full restoration of impact toughness up to original values of normalized and tempered material state. Microstructural observations clearly indicated partial dissolution of the Laves phase precipitates to be the crucial phenomenon that played a key role in restoring the impact toughness.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1693
Author(s):  
Robin Emmrich ◽  
Ulrich Krupp

The present study aims at the development of precipitation hardening fully ferritic steels with increased aluminum and niobium content for application at elevated temperatures. The first and second material batch were alloyed with tungsten or molybdenum, respectively. To analyze the influence of these elements on the thermally induced precipitation of the intermetallic Fe2Nb Laves phase and thus on the mechanical properties, aging treatments with varying temperature and holding time are performed followed by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) including elemental contrast based particle analysis as well as hardness measurements and tensile tests at room temperature and at 500 °C. The incorporation of molybdenum into the Laves phase sets in at an earlier stage of aging than the incorporation of tungsten, which leads to faster growth and coarsening of the Laves phase in the molybdenum-alloyed steel. Nevertheless, both concepts show a fast and massive increase in hardness (280 HV10) due to precipitation of Laves phase during aging at 650 °C. After 4 h aging, the yield strength increase at room temperature is 100 MPa, which stays stable at operation temperatures up to 500 °C.


2019 ◽  
Vol 6 (8) ◽  
pp. 086551 ◽  
Author(s):  
Xida Deng ◽  
Shuangshuang Chen ◽  
Qiang Hu ◽  
Shenghui Xie ◽  
Jizhao Zou ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 689-692
Author(s):  
E.H. Kim ◽  
Hi Won Jeong ◽  
Seung Eon Kim ◽  
Yong Taek Hyun ◽  
Yont Tai Lee ◽  
...  

A new high strength titanium alloy system with low cost alloying elements, such as Al, Fe, has been recently developed. In present study the expensive V was replaced with Fe, and Si was added from 0 to 7.5wt.%. The effect of Fe and Si on the microstructure and tensile properties of Ti-6Al-4Fe-xSi (x=0, 0.1, 0.25, 0.5, 0.75wt.%) alloys was investigated. The room and high temperature mechanical properties of Ti-6Al-4Fe alloys were better than those of the Ti-6Al-4V. It was mainly due to the phase boundary strengthening at ambient and high temperature. The strength and elongation of the developed alloys depended upon the Si contents. The Si elements made the grain boundary and colony size fine, and increased the strength of the developed alloys by solid solution and precipitation hardening. The tensile strength variation with the Si contents at room temperature and 400°C, and at 450°C and 500°C showed a similar behavior, respectively.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


Sign in / Sign up

Export Citation Format

Share Document