Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding

2001 ◽  
Vol 32 (3) ◽  
pp. 501-515 ◽  
Author(s):  
Y. Wang ◽  
H. L. Tsai
Author(s):  
Jun Zhou ◽  
Mohammad S. Davoud ◽  
Hai-Lung Tsai

Arc welding is generally used to join thick metals in many engineering applications. However, poor penetration often occurs due to arc heat diffusion into the base metal. Hence, arc welding of thick metals normally requires grooving and/or preheating of the base metal and sometimes requires multiple passes for very thick metals or metals with high conductivity, such as aluminum alloys. In gas metal arc welding of thick metals with grooves and preheating, complicated melt flow and heat transfer are caused by the combined effect of droplet impingement, gravity, electromagnetic force, surface tension, and plasma arc pressure. Understanding these complicated transport phenomena involved in the welding process is critical in improving the penetration depth and weld quality. In this study, mathematical models and associated numerical techniques have been developed to study the effects of grooves and preheating on melt flow, diffusion of species, and weld penetration in gas metal arc welding of thick metals. Complex melt flow, transient weld pool shape and distributions of temperature and species in the weld pool are calculated. The continuum formation is adopted to handle liquid region, mushy zone and solid region. VOF technique is used to handle transient deformed shape of weld pool surface. The preliminary results show both grooves and preheating have important effects on the melt flow in weld pool and the weld penetration. Computer animations showing the evolutions of temperature; melt flow; and the interaction between droplets and weld pool will be presented.


Author(s):  
J. Hu ◽  
H. L. Tsai

This article analyzes the dynamic process of groove filling and the resulting weld pool fluid flow in gas metal arc welding of thick metals with V-groove. Filler droplets carrying mass, momentum, thermal energy, and sulfur species are periodically impinged onto the workpiece. The complex transport phenomena in the weld pool, caused by the combined effect of droplet impingement, gravity, electromagnetic force, surface tension, and plasma arc pressure, were investigated to determine the transient weld pool shape and distributions of velocity, temperature, and sulfur species in the weld pool. It was found that the groove provides a channel which can smooth the flow in the weld pool, leading to poor mixing between the filler metal and the base metal, as compared to the case without a groove.


2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881620
Author(s):  
Reza Ebrahimpour ◽  
Rasul Fesharakifard ◽  
Seyed Mehdi Rezaei

Welding is one of the most common method of connecting parts. Welding methods and processes are very diverse. Welding can be of fusion or solid state types. Arc welding, which is classified as fusion method, is the most widespread method of welding, and it involves many processes. In gas metal arc welding or metal inert gas–metal active gas, the protection of the molten weld pool is carried out by a shielding gas and the filler metal is in the form of wire which is automatically fed to the molten weld pool. As a semi-metallic arc process, the gas metal arc welding is a very good process for robotic welding. In this article, to conduct the metal active gas welding torch, an auxiliary ball screw servomechanism is proposed to move under a welder robot to track the welded seam. This servomechanism acts as a moving fixture and operates separately from the robot. At last, a decentralized control method based on adaptive sliding mode is designed and implemented on the fixture to provide the desired motion. Experimental results demonstrate an appropriate accuracy of seam tracking and error compensation by the proposed method.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7444
Author(s):  
Amin Ebrahimi ◽  
Aravind Babu ◽  
Chris R. Kleijn ◽  
Marcel J. M. Hermans ◽  
Ian M. Richardson

One of the challenges for development, qualification and optimisation of arc welding processes lies in characterising the complex melt-pool behaviour which exhibits highly non-linear responses to variations of process parameters. The present work presents a computational model to describe the melt-pool behaviour in root-pass gas metal arc welding (GMAW). Three-dimensional numerical simulations have been performed using an enhanced physics-based computational model to unravel the effect of groove shape on complex unsteady heat and fluid flow in GMAW. The influence of surface deformations on the magnitude and distribution of the heat input and the forces applied to the molten material were taken into account. Utilising this model, the complex thermal and fluid flow fields in melt pools were visualised and described for different groove shapes. Additionally, experiments were performed to validate the numerical predictions and the robustness of the present computational model is demonstrated. The model can be used to explore the physical effects of governing fluid flow and melt-pool stability during gas metal arc root welding.


Sign in / Sign up

Export Citation Format

Share Document