Approach for Minimizing Operating Blast Furnace Carbon Rate Using Carbon-Direct Reduction (C-DRR) Diagram

2012 ◽  
Vol 44 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Soumavo Paul ◽  
S. K. Roy ◽  
P. K. Sen
2018 ◽  
Vol 277 ◽  
pp. 54-65 ◽  
Author(s):  
Anatoliy Golovchenko ◽  
Yuliya Pazynich ◽  
Michał Potempa

The paper is devoted to the issues of energy saving automatic control of radial burden distribution in the blast furnace throat. The main idea consists in control with prediction of the control resulting on the basis of automatic monitoring of burden surface texture. The paper develops the mathematic description of burden surface texture on the blast furnace throat by means of substantiation of minimum quantity of general indicators of the mixture being closely related to the main parameters of blast furnace processes. It is the first time that the optimum value of hoper depth in burden surface at 0.14 – 0.2 of throat diameter determined, the methods of its stabilization at the rate are substantiated, the new regularity of burden surface formation on the operating blast furnace throat is shown as consisting in the fact that the hoper depth on the surface is mainly changed responding the process of material charge rather than bulk material descent after the charge. It was also substantiated for the first time that radioisotopic methods for current control of burden distribution on the blast furnace throat provide timely formation of control actions for gas flow stabilization. The principle of self-tuning was theoretically substantiated for monitoring system of gamma profilometer responding to the monitoring conditions with respect to high penetration and random character of gamma rays. The principle enables significant improvement of accuracy, quick-response and radiological safety of gamma profilometer operation. The possibility of determination of burden surface texture on the throat of operating blast furnace and distribution of burden components according to infrared radiation of the surface without application of radiation hazardous monitoring means was proved for the first time.


Metallurgist ◽  
2017 ◽  
Vol 60 (9-10) ◽  
pp. 905-911 ◽  
Author(s):  
S. V. Filatov ◽  
I. F. Kurunov ◽  
Ya. M. Gordon ◽  
D. N. Tikhonov ◽  
S. N. Grachev

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 923 ◽  
Author(s):  
Anatoliy Golovchenko ◽  
Roman Dychkovskyi ◽  
Yuliya Pazynich ◽  
Cáceres Cabana Edgar ◽  
Natalia Howaniec ◽  
...  

The paper presents an experimental study on the formation process of burden surface texture on the blast furnace throat and its influence on the radial distribution of gas flow. The study was performed with the application of blast furnaces equipped with a bell-type charging device using radio-isotope means for the control of burden surface texture (profile) and burden surface level, i.e., gamma locators for burden surface texture. The study was carried out under the conditions of an operating blast furnace in an iron and steel plant using a unique GEOTAPS system for automated control of geometric and temperature parameters of burden material surface on the blast furnace throat. The influence of the surface texture on the gas flow distribution was also investigated. The possibility of a self-stabilization effect for burden surface texture and gas flow in an operating blast furnace under suitable conditions was experimentally proven. As a result of the experimental study performed, four ways of energy-saving technology implementation were determined for the control of blast furnace melting based on the data on the burden surface texture and previously unknown regularities of surface layer formation of burden material on the throat of an operating blast furnace with a bell-type charging device. The main idea of the paper is the development of automated control for the radial distribution of burden material and gas flow using actual or predicted surface texture parameters as important intermediate factors that both describe the process and have a significant simultaneous influence on it.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 609 ◽  
Author(s):  
Jiuzhou Tian ◽  
Akira Tanaka ◽  
Qingwen Hou ◽  
Xianzhong Chen

The distribution of burden layers is a vital factor that affects the production of a blast furnace. Radars are advanced instruments that can provide the detection results of the burden surface shape inside a blast furnace in real time. To better estimate the burden layer thicknesses through improving the prediction accuracy of the burden descent during charging periods, an innovative data-driven model for predicting the distribution of the burden surface descent speed is proposed. The data adopted were from the detection results of an operating blast furnace, collected using a mechanical swing radar system. Under a kinematic continuum modeling mechanism, the proposed model adopts a linear combination of Gaussian radial basis functions to approximate the equivalent field of burden descent speed along the burden surface radius. A proof of the existence and uniqueness of the prediction solution is given to guarantee that the predicted radial profile of the burden surface can always be calculated numerically. Compared with the plain data-driven descriptive model, the proposed model has the ability to better characterize the variability in the radial distribution of burden descent speed. In addition, the proposed model provides prediction results of higher accuracy for both the future surface shape and descent speed distribution.


2020 ◽  
Vol 2,2020 (2,2020 (125)) ◽  
pp. 5-9
Author(s):  
Vaniukov A ◽  
Kovalyov D ◽  
Vaniukova N ◽  
Khodyko I ◽  
Bezshkurenko O

The objective of the present work is to research a quantitate ratio of degree direct reduction inside of SRP and degree of indirect reduction outside of SRP on the top of the blast furnace.The reactions of direct and indirect reduction occurring during the heat treatment of self reducing pellets (SRP) have been studied. In this investigation Blast furnace (BF) sludge which contains particles of coke, has been included in the SRP blend as a source of solid reductant and iron bearing oxides. In the SRP as a part ot the blast furnace burden occur the reactions simultaneously: inside of SRP-direct reduction by Csolid; gasification of carbon and indirect reduction by CO; and outside of SRP-indirect reduction of iron bearing oxides by reducing gas coming from the hearth of blast furnace through the column of charged materials. The experimental setup is shown in Fig. 1. It con-sists of a electrical heating furnace, which can be moved up and down. The quartz tube passes through the furnace. The reaction zone is in the middle of the furnace. Neutral argon atmosphere is created and for indirect reduction argon changed - on hydrogen. Gases of argon, hydrogen are introduced into the furnace separately. Wire of nickel alloy chromosome joins the scales test. A thermocouple is located in the tube.The crucible of wire chrome-nickel was permeable.Metohd. The experiments was performed continuously from the start temperature (~200 ˚C) to the experimental temperature (500 ˚C; 700 ˚C; 900 ˚C; 1100 ˚C) in argon free environment. Upon reaching the desired temperature argon was replaced by hydrogen during 30 minutes. After that the reduced probe of SRP was cooled in argon. Results. The integrated degree of reduction is equal 100%, which includes 98,6 % direct reduction by solid carbon under temperatures 1100°C. The chemical analysis of the reduced SRP showed the degree of integrated reduction change from 85,79 % (900 °C) to 92,50 % (1000 °C) and 84,6% (1100°C) and metallization 83,30 % (900 °C), 89,90 % (1000 °C), 80,75 % (1100 °C).These data correspond to results of degree of reduction SRP depends on temperature


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.


2014 ◽  
Vol 44 (2) ◽  
pp. 132-135 ◽  
Author(s):  
E. G. Donskov ◽  
V. P. Lyalyuk ◽  
D. E. Donskov

2017 ◽  
Vol 865 ◽  
pp. 3-8
Author(s):  
K.S. Abdel Halim ◽  
M. Ramadan ◽  
A. Shawabkeh ◽  
N. Fathy

Ironmaking processes take three main forms namely; blast furnace, direct reduction and direct smelting processes. Ironmaking is energy intensive sector as it requires huge amount of natural resources. It is also very important for the worldwide economy where it provides the backbone for construction, transportation and manufacturing. Many factors are strongly affecting the developing of ironmaking processes such as energy consumption, materials costs, and environment problems. These factors should be considered when discussing any new trend for developing ironmaking processes. The present work handles the current status and future of ironmaking processes. The technical and economic environment that motivates the development of these processes will be also clarified. The manuscript is designated to investigate theoretically and practically the possibility of using nanomaterials in ironmaking processes. Nano-sized iron oxides can be considered a promising source for deceasing energy consumption in iron and steel industry. The reduction of iron oxide is the most important processes in ironmaking and usually operated at relatively high temperatures. The nanopowder of iron oxide could be charged to a blast furnace together with the blast, much like the current pulverized coal injection technology. In that case, the reducibility of blast furnace burdens will be improved and consequently the energy consumption for reduction will be declined. Accordingly, minimizing the energy consumption will greatly influence the gross energy consumption of iron and steel production.


Sign in / Sign up

Export Citation Format

Share Document