Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy

2016 ◽  
Vol 47 (3) ◽  
pp. 2048-2062 ◽  
Author(s):  
Danial Ghahremani Moghadam ◽  
Khalil Farhangdoost ◽  
Reza Masoudi Nejad
Metals ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 87 ◽  
Author(s):  
Huijie Zhang ◽  
Min Wang ◽  
Xiao Zhang ◽  
Zhi Zhu ◽  
Tao Yu ◽  
...  

2014 ◽  
Vol 496-500 ◽  
pp. 110-113
Author(s):  
Dong Gao Chen ◽  
Jin He Liu ◽  
Zhi Hua Ma ◽  
Wu Lin Yang

The7A05 aluminum alloy of the 10mm thickness was welded by the friction stir welding. The microstructure and mechanical Properties of the welded joint was researched by the optical microscope, etc. The results showed: the microstructure of the weld nugget zone and the thermal mechanically affected zone were refined as the welding speed increasing when the rotate speed is constant. As the welding speed increasing the strength of extension of the welded joint is increasing at first and then stable basically. but the yield strength had no obvious change.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4211 ◽  
Author(s):  
Anton Naumov ◽  
Iuliia Morozova ◽  
Evgenii Rylkov ◽  
Aleksei Obrosov ◽  
Fedor Isupov ◽  
...  

The objective of this study was to investigate the effect of the high welding speed on the mechanical properties and their relations to microstructural characteristics of butt friction stir welded joints with the use of 6082-T6 aluminum alloy. The aluminum sheets of 2.0 mm thick were friction stir welded at low (conventional FSW) and high welding speeds (HSFSW) of 200 and 2500 mm/min, respectively. The grain size in the nugget zone (NZ) was decreased; the width of the softened region was narrowed down as well as the lowest microhardness value located in the heat-affected zone (HAZ) was enhanced by HSFSW. The increasing welding speed resulted in the higher ultimate tensile strength and lower elongation, but it had a slight influence on the yield strength. The differences in mechanical properties were explained by analysis of microstructural changes and tensile fracture surfaces of the welded joints, supported by the results of the numerical simulation of the temperature distribution and material flow. The fracture of the conventional FSW joint occurred in the HAZ, the weakest weld region, while all HSFSW joints raptured in the NZ. This demonstrated that both structural characteristics and microhardness distribution influenced the actual fracture locations.


Sign in / Sign up

Export Citation Format

Share Document