Self-aligned Ti germanosilicide formation on a polycrystalline Si/SiGe/Si extrinsic base for SiGe heterojunction bipolar transistors

2003 ◽  
Vol 32 (11) ◽  
pp. 1349-1356 ◽  
Author(s):  
Seung-Yun Lee ◽  
Chan Woo Park ◽  
Jin-Yoeng Kang
1993 ◽  
Vol 32 (Part 2, No. 10B) ◽  
pp. L1500-L1502 ◽  
Author(s):  
Hiroshi Ito ◽  
Osaake Nakajima ◽  
Koichi Nagata ◽  
Takashi Makimura ◽  
Tadao Ishibashi

1997 ◽  
Vol 18 (9) ◽  
pp. 426-428 ◽  
Author(s):  
R. Tang ◽  
J. Ford ◽  
B. Pryor ◽  
S. Anandakugan ◽  
P. Welch ◽  
...  

2003 ◽  
Vol 798 ◽  
Author(s):  
Toshiki Makimoto ◽  
Yoshiharu Yamauchi ◽  
Kazuhide Kumakura

ABSTRACTWe have investigated high-power characteristics of GaN/InGaN double heterojunction bipolar transistors on SiC substrates grown by metalorganic vapor phase epitaxy. The p-InGaN extrinsic base layers were regrown to improve ohmic characteristics of the base. Base-collector diodes showed low leakage current at their reverse bias voltages due to a wide bandgap of a GaN collector, resulting in a high-voltage transistor operation. A 90 μm × 50 μm device operated up to a collector-emitter voltage of 28 V and a collector current of 0.37 A in its common-emitter current-voltage characteristics at room temperature, which corresponds to a DC power of 10.4 W. A collector current density and a power density are as high as 8.2 kA/cm2 and 230 kW/cm2, respectively. These results show that nitride HBTs are promising for high-power electronic devices.


Author(s):  
N. David Theodore ◽  
Gordon Tam

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. SiGe is typically used as an epitaxial base material in HBTs. To obtain extremely high-performance bipolar-transistors it is necessary to reduce the extrinsic base-resistance. This can be done by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however with the use of implantation is that blanket implants have been found to enhance strain-relaxation of SiGe/Si. Strain relaxation will cause the bandgap-difference between Si and SiGe to decrease; this difference is maximum for a strained SiGe layer. The electrical benefits of using SiGe/Si arise largely from the presence of a significant bandgap-difference across the SiGe/Si interface. Strain relaxation reduces this benefit. Furthermore, once misfit or threading dislocations result (during strain-relaxation), the defects can give rise to recombination-generation in depletion regions of the device; high electrical leakage currents result.


Sign in / Sign up

Export Citation Format

Share Document