Influence of dual-frequency plasma-enhanced chemical-vapor deposition Si3N4 passivation on the electrical characteristics of AlGaN/GaN heterostructure field-effect transistors

2004 ◽  
Vol 33 (5) ◽  
pp. 400-407 ◽  
Author(s):  
W. S. Tan ◽  
P. A. Houston ◽  
G. Hill ◽  
R. J. Airey ◽  
P. J. Parbook
2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chin-Lung Cheng ◽  
Chien-Wei Liu ◽  
Bau-Tong Dai ◽  
Ming-Yen Lee

Carbon nanotubes (CNTs) have been explored in nanoelectronics to realize desirable device performances. Thus, carbon nanotube network field-effect transistors (CNTNFETs) have been developed directly by means of alcohol catalytic chemical vapor deposition (ACCVD) method using Co-Mo catalysts in this work. Various treated temperatures, growth time, and Co/Mo catalysts were employed to explore various surface morphologies of carbon nanotube networks (CNTNs) formed on the SiO2/n-type Si(100) stacked substrate. Experimental results show that most semiconducting single-walled carbon nanotube networks with 5–7 nm in diameter and low disorder-induced mode (D-band) were grown. A bipolar property of CNTNFETs synthesized by ACCVD and using HfO2as top-gate dielectric was demonstrated. Various electrical characteristics, including drain current versus drain voltage(Id-Vd), drain current versus gate voltage(Id-Vg), mobility, subthreshold slope (SS), and transconductance(Gm), were obtained.


2020 ◽  
Vol 15 (6) ◽  
pp. 673-678
Author(s):  
Soo-Young Kang ◽  
Gil-Sung Kim ◽  
Min-Sung Kang ◽  
Won-Yong Lee ◽  
No-Won Park ◽  
...  

Transition metal dichalcogenides (TMDs) are layered two-dimensional (2D) semiconductors and have received significant attention for their potential application in field effect transistors (FETs), owing to their inherent characteristics. Among the various reported 2D TMD materials, monolayer (ML) molybdenum disulfide (MoS2) is being considered as a promising channel material for the fabrication of future transistors with gate lengths as small as ∼1 nm. In this work, we present chemical vapor deposition-grown triangular ML MoS2 with a lateral size of ∼22 μm and surface coverage of ∼47%, as well as a PMMA-based wet transfer process for depositing the as-grown triangular ML MoS2 flakes onto a SiO2 (∼100 nm)/p++-Si substrate. Additionally, we demonstrate the fabrication of an n-type MoS2-based FET device and study its electrical characteristics as a function of the gate voltage. Our FET device shows an excellent on/off ratio of ∼106, an off-state leakage current of less than 10– 12 A, and a field effect mobility of ∼10.4 cm2/Vs at 300 K.


2000 ◽  
Vol 639 ◽  
Author(s):  
Chang-Cheng Chuo ◽  
Chia-Min Kan ◽  
Jen-Inn Chyi ◽  
Tzer-En Nee ◽  
Chia-Ming Lee ◽  
...  

ABSTRACTAlGaN/InGaN heterostructure field effect transistors were grown on sapphire by metalorganic chemical vapor deposition. Transmission electron microscopy shows that there are no additional dislocations induced by inserting the InGaN channel while a variation of strain field across the channel is observed. The transistors exhibit good pinch-off characteristics with a threshold voltage of about −2.9 V and a saturation current density of 0.55 A/mm. At room temperature, a peak transconductance of 132 (mS/mm) was obtained for a 1.0 μm-device. Current gain cutoff frequency fT of 9.4 GHz and maximum oscillation frequency fmax of 28.2 GHz were measured for the 1.0 μm-device. As the temperature is increased to 300 °C, the transconductance decreases to 50 mS/mm accompanied by a reduction of saturation current density of 0.24 A/mm due to the enhanced carrier scattering, gate leakage, and drain-source resistance.


Sign in / Sign up

Export Citation Format

Share Document