scholarly journals Infrared Absorption and Its Sources of CdZnTe at Cryogenic Temperature

Author(s):  
Hiroshi Maeshima ◽  
Kosei Matsumoto ◽  
Yasuhiro Hirahara ◽  
Takao Nakagawa ◽  
Ryoichi Koga ◽  
...  

AbstractTo reveal the causes of infrared absorption in the wavelength region between electronic and lattice absorptions, we measured the temperature dependence of the absorption coefficient of p-type low-resistivity ($$\sim 10^2~ \Omega \mathrm{cm}$$ ∼ 10 2 Ω cm ) CdZnTe crystals. We measured the absorption coefficients of CdZnTe crystals in four wavelength bands ($$\lambda =6.45$$ λ = 6.45 , 10.6, 11.6, 15.1$$~\mu $$ μ m) over the temperature range of $$T=8.6$$ T = 8.6 -300 K with an originally developed system. The CdZnTe absorption coefficient was measured to be $$\alpha =0.3$$ α = 0.3 -0.5 $$\mathrm{cm}^{-1}$$ cm - 1 at $$T=300$$ T = 300 K and $$\alpha =0.4$$ α = 0.4 -0.9 $$\mathrm{cm}^{-1}$$ cm - 1 at $$T=8.6$$ T = 8.6 K in the investigated wavelength range. With an absorption model based on transitions of free holes and holes trapped at an acceptor level, we conclude that the absorption due to free holes at $$T=150$$ T = 150 -300 K and that due to trapped-holes at $$T<50$$ T < 50 K are dominant absorption causes in CdZnTe. We also discuss a method to predict the CdZnTe absorption coefficient at cryogenic temperature based on the room-temperature resistivity.

1965 ◽  
Vol 43 (5) ◽  
pp. 793-799 ◽  
Author(s):  
S. Paddi Reddy ◽  
C. W. Cho

The pressure-induced fundamental infrared absorption band of deuterium has been investigated in the pure gas for gas pressures up to 250 atm at room temperature. The binary and ternary absorption coefficients were determined from the integrated absorption coefficients of the fundamental band at different densities of the gas. The splitting of the Q branch into two well-resolved components QP and QR was observed; the contours also exhibit pronounced S(0) and S(2) components with an indication of the S(1) and O(2) components. The existing theory and the available molecular parameters of deuterium were used to calculate the binary absorption coefficients of the individual lines of the O and S branches and of the quadrupole part of the Q branch. From these calculations and the experimental value of the total binary absorption coefficient of the fundamental band, the overlap part of the binary absorption coefficient of the Q branch was estimated.


1984 ◽  
Vol 37 ◽  
Author(s):  
L. H. Greene ◽  
W. L. Feldmann ◽  
J. M. Rowell ◽  
B. Batlogg ◽  
R. Hull ◽  
...  

AbstractWe report the observation of a higher degree of preferred crystalline orientation in Nb/rare earth superlattices for modulation wavelengths in the range of 200 Å to 500 Å than that exhibited by single component films. All films and multilayers are sputter deposited onto room temperature sapphire substrates. Electronic transport measurements also show that the residual resistance ratio is higher and the room temperature resistivity is lower than for multilayers of either greater or lower periodicities. Transmission electron micrographs (TEM) showing excellent layering, grain size comparable to the layer thickness, and evidence of some degree of epitaxy are presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Taoreed O. Owolabi ◽  
Kabiru O. Akande ◽  
Sunday O. Olatunji

Doping and fabrication conditions bring about disorder in MgB2superconductor and further influence its room temperature resistivity as well as its superconducting transition temperature (TC). Existence of a model that directly estimatesTCof any doped MgB2superconductor from the room temperature resistivity would have immense significance since room temperature resistivity is easily measured using conventional resistivity measuring instrument and the experimental measurement ofTCwastes valuable resources and is confined to low temperature regime. This work develops a model, superconducting transition temperature estimator (STTE), that directly estimatesTCof disordered MgB2superconductors using room temperature resistivity as input to the model. STTE was developed through training and testing support vector regression (SVR) with ten experimental values of room temperature resistivity and their correspondingTCusing the best performance parameters obtained through test-set cross validation optimization technique. The developed STTE was used to estimateTCof different disordered MgB2superconductors and the obtained results show excellent agreement with the reported experimental data. STTE can therefore be incorporated into resistivity measuring instruments for quick and direct estimation ofTCof disordered MgB2superconductors with high degree of accuracy.


1989 ◽  
Vol 43 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Dane Bićanić ◽  
Siegfried Krüger ◽  
Paul Torfs ◽  
Bruno Bein ◽  
Frans Harren

An experimental setup for performance of reverse mirage spectroscopy at CO2 laser wavelengths on liquid samples having high values of absorption coefficients is described. One and the same liquid is used as both the absorbing and deflecting medium. The Rosencwaig-Gersho theory has been applied, and the choice of experimental conditions that would enable determination of absorption coefficient β from the magnitude of photothermal signals measured at two different probe beam distances (probing locations) is discussed. The usefulness of this technique (essentially not inhibited by the requirements imposed on the sample's thickness) is tested on methanol having absorption coefficients β close to 300 cm−1 in the wavelength region covered by CO2 laser emission.


1961 ◽  
Vol 39 (1) ◽  
pp. 189-204 ◽  
Author(s):  
J. D. Poll ◽  
J. Van Kranendonk

The theory of translational infrared absorption in gases is developed. Invariant expressions for the integrated absorption coefficients are derived. The absorption coefficients are expanded in powers of the density, and the binary absorption coefficients are expressed in terms of a model for the induced pair dipole moments. Monatomic gas mixtures, diatomic gases, and diatomic–monatomic gas mixtures are considered in detail. As an application the binary absorption coefficient of the translational band of hydrogen is calculated.


2007 ◽  
Vol 280-283 ◽  
pp. 341-344
Author(s):  
Xiao Lei Li ◽  
Yuan Fang Qu ◽  
Wei Bing Ma ◽  
Zhan Shen Zheng

Ni/BaTiO3 composite was prepared by decomposition of NiC2O4·2H2O/BaTiO3 precursor, which was prepared by precipitating of nickel in the form of oxalate into the BaTiO3 slurry. The composite must be sintered in reducing atmosphere. Otherwise NTC effect would be introduced. The prepared composite almost had no PTC effect. But PTC effect of the Ni/BaTiO3 composite can be effectively renewed by heat-treatment in air. Under a proper composition and method, the composite shows low room-temperature resistivity (ρRT=6.0 Ω·cm) and obvious PTC effect (ρmax/ρmin=102).


2014 ◽  
Vol 900 ◽  
pp. 134-137
Author(s):  
Xu Xin Cheng ◽  
Dong Xiang Zhou ◽  
Qi Jun Xiao ◽  
Zhao Xiong Zhao

The PTCR characteristics of (Ba1-xSmx)TiO3(BSMT) with different donor-doped concentration (x) sintered in a reducing atmosphere and reoxidized in air are investigated. The results reveal that the room temperature resistivity (ρRT) of the semiconducting BSMT ceramics first decreases and then increases with increasing of thexvalues, especially whenxis 0.004, the semiconducting BSMT ceramics reoxidized at 850oC for 1 h after sintering at 1300 °C for 30 min in a reducing atmosphere achieve a lower room temperature resisitivity of 82.6 Ωcm. in addition, the doped 0.1 mol% Sm3+BSMT samples fired at 1300 °C for 30 min in air exhibit remarkable PTCR effect with a resistance jumping ratio of 3.4 orders magnitude; moreover, a lower ρRTof the BSMT specimens sintered in a reducing atmosphere is obtained.


1983 ◽  
Vol 25 ◽  
Author(s):  
J. C. Hensel ◽  
R. T. Tung ◽  
J. M. Poate ◽  
F. C. Unterwald ◽  
D. C. Jacobson

ABSTRACTTransport studies have been performed on thin films of CoSi 2 and NiSis2 in the temperature range 1 to 300 K. The conductivities are metallic with essentially the same temperature dependence; however, the residual resistivities are markedly different even though the two silicides are structurally similar (the room temperature resistivity of NiSi2 being at least twice that of CoSi2 of 15 μΩ cm). The difference is attributed to intrinsic defects in NiSi2. This defect has been simulated by ion bombardment of the film where it is also shown that Matthiesen's rule is obeyed over a remarkable range of bombardment doses.


2009 ◽  
Vol 1166 ◽  
Author(s):  
Hillary Kirby ◽  
Joshua Martin ◽  
Anuja Datta ◽  
Lidong Chen ◽  
George S. Nolas

AbstractDimensional nanocomposites of PbTe with varying carrier concentrations were prepared from undoped and Ag doped PbTe nanocrystals synthesized utilizing an alkaline aqueous solution-phase reaction. The nanocrystals were densified by Spark Plasma Sintering (SPS) for room temperature resistivity, Hall, Seebeck coefficient, and temperature dependent thermal conductivity measurements. The nanocomposites show an enhancement in the thermoelectric properties compared to bulk PbTe with similar carrier concentrations, thus demonstrating a promising approach for enhanced thermoelectric performance.


Sign in / Sign up

Export Citation Format

Share Document