The Effect of Heat Treatment Process Parameters on Mechanical Properties, Precipitation, Fatigue Life, and Fracture Mode of an Austenitic Mn Hadfield Steel

2018 ◽  
Vol 27 (10) ◽  
pp. 5246-5253 ◽  
Author(s):  
S. H. Mousavi Anijdan ◽  
M. Sabzi
2015 ◽  
Vol 1120-1121 ◽  
pp. 1109-1114
Author(s):  
Xin Lei ◽  
Hui Huang ◽  
S.P. Wen

This study investigated the mechanical properties and microstructures of Er-containing Al–Mg alloys. The research found that the H114-T sheet of Er-containing Al–Mg alloys showed a relative good comprehensive performance in mechanical properties. With the special rolling and heat treatment process, this H114-T sheet showed different morphology of microstructures with the other sheets in Er-containing Al–Mg alloys. Grains in H114-T sheet performed irregular shape polygon, a number of subgrains appeared in grains, the amount of dislocations in grains decreased. H114-T sheet possessed a lot of Copper texture, this may be one of important factors influenced the mechanical properties.


2007 ◽  
Vol 546-549 ◽  
pp. 825-828 ◽  
Author(s):  
Man Jin ◽  
Jing Li ◽  
Guang Jie Shao

The precipitation behaviors and microstructures of nano-precipitates in AA6082 Al-Mg-Si alloy with and without Cu additions during heat treatment process were studied using hardness measurements, TEM, mechanical tests and 3DAP. Meanwhile, the softening process of 6082 alloys with Cu and without Cu, isothermally conditioned at 250°C, has also been investigated. It was found that the rate of age hardening, mechanical properties and thermal stability are higher for the Cu-containing alloy. The TEM and 3DAP observations showed that Q’ precipitates were existed after aged at 170°C for 8h in the alloy with Cu addition. Comparing the hardness, mechanical properties and thermal stability curves, it was concluded that the Q’ precipitates play a major role in improving the age hardening kinetics and properties of 6082 alloy with Cu addition.


2021 ◽  
Vol 1035 ◽  
pp. 344-349
Author(s):  
Ye Qin Zhang ◽  
Ping Zhong ◽  
Huan Feng Li ◽  
Wen Qiang Zhang

The effect of solution temperature and aging temperature on mechanical properties and microstructure of the new ultrahigh strength stainless steel S280 was investigated by heat treatment process experiment. The results showed that the optimal heat treatment process was as follows: heating to 1080 °C,holding for a hour, and quenching in oil; cooling to -73 °C, holding for 2 hour, and warming in air to room temperature; heating to 540~550 °C, holding for 4 hour, and cooling in air. Choosing this heat treatment process, the steel can get good coordination between strength and toughness. Analyzed by HREM, the steel had desirable microstructures, which were fine lath martensite matrix with high density dislocation and finely dispersed precipitate strengthening phase, and film-like reversed austenite precipitated from the boundary of martensite.


2019 ◽  
Vol 264 ◽  
pp. 02001 ◽  
Author(s):  
Eduardo de Avila ◽  
Jaeseok Eo ◽  
Jihye Kim ◽  
Namsoo P. Kim

PMMA, PC, and PEEK are thermoplastic polymers that possess favorable properties for biomedical applications. These polymers have been used in fields of maxillo-facial, orthopedic, intraocular surgery, and bio-implant, due to their excellent mechanical properties, osteoinductive potential, and antimicrobial capabilities. In this study, the effect of heat treatment on the mechanical properties of 3D printed polymers was characterized. By modifying printing temperature and post heat treatment process, the mechanical properties were specifically tailored for different applications, correlating with the properties of the implants that are commonly made using molding processes.


2016 ◽  
Vol 39 (5) ◽  
pp. 1604-1611 ◽  
Author(s):  
Mustafa Özgür Bora ◽  
Onur Çoban ◽  
Togayhan Kutluk ◽  
Sinan Fidan ◽  
Tamer Sinmazçe˙lk

2013 ◽  
Vol 310 ◽  
pp. 145-149 ◽  
Author(s):  
Jian Liu ◽  
Fu Zeng Hou ◽  
Xiao Guang Yu

In order to improve the comprehensive mechanical properties of the steel, the heat treatment software COSMAP is used to simulate the rolling and controlled cooling of H-beam. The numerical simulation shows that the mechanical properties of controlled cooling can be obviously improved, when the cooling rate is controlled at 10°C/s around. Strength and hardness can be improved under the condition of ductility and toughness ensured. Meanwhile the amount of residual austenite can be reduced significantly. It provides a theoretical basis for further optimization of the heat treatment process.


2008 ◽  
Vol 571-572 ◽  
pp. 27-32 ◽  
Author(s):  
Volkan Güley ◽  
A. Erman Tekkaya ◽  
Turhan Savaş ◽  
Feridun Özhan

Experimental investigation of residual stresses after heat treatment and grinding processes in the production of ball bearing rings has been carried out. The residual stresses were measured by X-ray diffraction method utilizing chromium radiation, which has an average penetration depth of 5 μm incident on 100Cr6 (AISI-E52100) ball bearing steel. The process parameters of heat treatment and grinding processes were varied so as to represent the extreme values that can be applied in the respective processes. Hardness and percent retained austenite limit the heat treatment process parameters; while roundness, surface roughness and form the grinding process. Tensile surface residual stresses on the raceway of ball bearing rings changes to compression after grinding in both circumferential and axial directions. In grinding relatively higher compressive stresses were measured in axial direction compared to the circumferential direction. This experimental investigation also showed that the influence of heat treatment process parameters on the magnitude and distribution of residual stresses survived even after grinding process; i.e. heat treatment and grinding processes cannot be evaluated independently in process design for favourable residual stresses.


2011 ◽  
Vol 142 ◽  
pp. 95-98
Author(s):  
Jian Sheng Ding ◽  
Lin Xun Liu ◽  
Jin Chun Feng

The supercritical material F92 steel is regarded as the research object, and the influence law of heat treatment process on its tissue and properties is analyzed. The results show that when the temperature of heat treatment quenching and tempering is too low, a large number of alloying elements cannot be fully integrated into the austenite, and the optimal obdurability of F92 steel is still not fully exploited; while too high temperature of heat treatment quenching and tempering will weaken the strength, plasticity and toughness. When F92 steel is processed by heating quenching at 1050 °C and tempering at 680 °C, its tissue is the smaller tempered lath martensite. The carbide is precipitated, generating precipitation strengthening, which gives it a high rupture strength and toughness. F92 steel is with high mechanical properties when heating quenched at 1050 °C and tempered 680 °C.


Sign in / Sign up

Export Citation Format

Share Document