Comparison Between Four Flow Stress Models Characterizing the Constitutive Behavior of Hot Deformation of 40Mn Steel

Author(s):  
Wanhui Huang ◽  
Liping Lei ◽  
Gang Fang
2019 ◽  
Vol 51 (1) ◽  
pp. 467-481
Author(s):  
Suwaree Chankitmunkong ◽  
Dmitry G. Eskin ◽  
Chaowalit Limmaneevichitr

Abstract Aluminum piston alloys of the AA4032 type are produced by direct-chill (DC) casting and subsequent forging; therefore, it is important to understand their thermomechanical behavior. In recent years, it was shown that additions of Cu and Er could improve mechanical properties of these alloys at room and high temperatures. In this work, we studied the constitutive behavior of AA4032-type alloys with and without Cu and Er additions. The experimental true stress–true strain curves were obtained by compression tests under various temperatures [683 K to 723 K (410 °C to 450 °C)] and strain rates (0.01 to 10 s−1) to determine constitutive parameters [strain-rate sensitivity, activation energy, and Zener–Hollomon (Z) parameter] for the hot deformation behavior of AA4032-type piston alloys with and without additions of Cu and Er. The flow stress decreased with increasing deformation temperature and decreasing strain rate. The results also showed that increasing the Cu content increased the flow stress over the applied range of deformation conditions due to solid-solution strengthening and the formation of primary Si particles, which led to an increase in the activation energy during hot deformation. Moreover, the main microstructural damage in the AA4032 alloy with 3.5 pct Cu was predominantly due to the cracking of primary Si particles. Additions of 0.4 pct Er and 3.5 pct Cu lower the activation energy of deformation, Q, as compared to the base alloy and the alloy with 3.5 pct Cu. The microstructures in the deformed specimens consisted of subgrains, recrystallized grains, and fine eutectic phases. The alloys containing Er demonstrated more polygonized grains at a low strain rate than the alloys without Er, indicating that Er hindered recrystallization development. The peak stress of the AA4032 alloy with 3.5 pct Cu alloy was higher than for the base AA4032 alloy and for the AA4032 alloy with 3.5 pct Cu and 0.4 pct Er additions, which was attributed to the prevalence of the work-hardening mechanism over the softening mechanism.


2019 ◽  
Vol 23 ◽  
pp. 221-226
Author(s):  
Petr Opěla ◽  
Ivo Schindler ◽  
Vladivoj Očenášek ◽  
Petr Kawulok ◽  
Rostislav Kawulok ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2456
Author(s):  
Zhijun Yang ◽  
Weixin Yu ◽  
Shaoting Lang ◽  
Junyi Wei ◽  
Guanglong Wang ◽  
...  

The hot deformation behaviors of a new Ti-6Al-2Nb-2Zr-0.4B titanium alloy in the strain rate range 0.01–10.0 s−1 and temperature range 850–1060 °C were evaluated using hot compressing testing on a Gleeble-3800 simulator at 60% of deformation degree. The flow stress characteristics of the alloy were analyzed according to the true stress–strain curve. The constitutive equation was established to describe the change of deformation temperature and flow stress with strain rate. The thermal deformation activation energy Q was equal to 551.7 kJ/mol. The constitutive equation was ε ˙=e54.41[sinh (0.01σ)]2.35exp(−551.7/RT). On the basis of the dynamic material model and the instability criterion, the processing maps were established at the strain of 0.5. The experimental results revealed that in the (α + β) region deformation, the power dissipation rate reached 53% in the range of 0.01–0.05 s−1 and temperature range of 920–980 °C, and the deformation mechanism was dynamic recovery. In the β region deformation, the power dissipation rate reached 48% in the range of 0.01–0.1 s−1 and temperature range of 1010–1040 °C, and the deformation mechanism involved dynamic recovery and dynamic recrystallization.


2016 ◽  
Vol 35 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Sendong Gu ◽  
Liwen Zhang ◽  
Chi Zhang ◽  
Wenfei Shen

AbstractThe hot deformation characteristics of nickel-based alloy Nimonic 80A were investigated by isothermal compression tests conducted in the temperature range of 1,000–1,200°C and the strain rate range of 0.01—5 s–1on a Gleeble-1500 thermomechanical simulator. In order to establish the constitutive models for dynamic recrystallization (DRX) behavior and flow stress of Nimonic 80A, the material constantsα,nand DRX activation energyQin the constitutive models were calculated by the regression analysis of the experimental data. The dependences of initial stress, saturation stress, steady-state stress, dynamic recovery (DRV) parameter, peak strain, critical strain and DRX grain size on deformation parameters were obtained. Then, the Avrami equation including the critical strain for DRX and the peak strain as a function of strain was established to describe the DRX volume fraction. Finally, the constitutive model for flow stress of Nimonic 80A was developed in DRV region and DRX region, respectively. The flow stress values predicted by the constitutive model are in good agreement with the experimental ones, which indicates that the constitutive model can give an accurate estimate for the flow stress of Nimonic 80A under the deformation conditions.


Author(s):  
Saibal Kanchan Barik ◽  
Ganesh R Narayanan ◽  
Niranjan Sahoo

Abstract The present study deals with both numerical and experimental evaluation of failure strain and fracture pattern during shock tube impact forming of 1.5 mm thick AA 5052-H32 sheet. A hemispherical end nylon striker is propelled to deform the sheet at different velocities. Here the main objective is to understand the effect of flow stress models and fracture models on the forming outputs. The experimental situation is modelled in two stages, i.e., incorporating the pressure in the first stage, and displacement of the striker in the second stage in finite element simulation using the finite element (FE) code (DEFORM-3D). A new strategy followed to evaluate the rate-dependent flow stress data from the tensile test of samples sectioned from shock tube-based deformed sheet is acceptable, and finite element simulations incorporating those properties predicted accurate failure strain and fracture pattern. Out of all the flow stress models, the modified Johnson-Cook model has a better flow stress predictability due to the inclusion of the non-linear strain rate sensitivity term in the model. During the prediction of the failure strain and necking location, Cockcroft-Latham failure model, Brozzo failure model, and Freudenthal failure model have a fair agreement with experimental data in combination with the two flow stress models, i.e., Johnson-Cook model and modified Johnson-Cook model.


2013 ◽  
Vol 747-748 ◽  
pp. 878-884 ◽  
Author(s):  
Qing Rui Wang ◽  
Ai Xue Sha ◽  
Xing Wu Li ◽  
Li Jun Huang

The effect of strain rate and deformation temperature on flow stress of TC18 titanium alloy was studied through heat simulating tests in 760~960 with temperature interval and the strain rate interval in 0.01~10s-1. Relationship model of flow stress versus strain was established and hot deformation mechanics of TC18 titanium alloy was analyzed. The results show that the flow stress reduces obviously as the deformation temperature increases or the strain rate decreases. Dynamic recovery occurs at high strain rate above phase transformation point, while dynamic recrystallization occurs at low strain rate as well as at the temperature below phase transformation point.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1277 ◽  
Author(s):  
Guoqing Dai ◽  
Yuwen Cui ◽  
Danying Zhou ◽  
Yanhua Guo ◽  
Hui Chang ◽  
...  

The isothermal hot compression behavior of new Ti–Fe–B (named as TF400) alloy was investigated in the temperature range of 750–950 °C and strain rate range from 0.01 to 10 s−1 with the maximum height reduction of 60% by using a Gleeble 3800 thermal simulator. By considering the effect of strain via variable material parameters, a modified constitutive model was proposed to accurately predict the flow stress. The predicted results demonstrate that the flow stress decreases with the increase of temperature while it increases as the strain rate increases, in good agreement with the present experimental results. A mechanistic understanding of plastic deformation behavior in the TF400 alloys was developed by inspecting the microstructural characteristics prior to and after deformations. Dynamic recrystallization and dynamic transformation were found to be the dominant restoration mechanism during the hot deformation process.


Sign in / Sign up

Export Citation Format

Share Document