Tribological Performance of Bearing Steel with Bi-triangular and Circular Textures under Lubricated Sliding

Author(s):  
Manish Kumar ◽  
Rajnesh Tyagi
Author(s):  
C. Lorenzo-Martin ◽  
O. Ajayi ◽  
G. Fenske

The properties of metallic alloys can be substantial modified by the addition of a second phase particles. This is especially noticeable when hard particles are incorporated in a relatively soft matrix, often resulting in improved mechanical and tribological performance. This paper presents the results of our study on mechanical and tribological performance enhancement of 6061 Aluminum alloys by incorporation of B4C particle via Friction stir processing (FSP). Unidirectional ball on flat friction and wear tests were conducted with a base material, friction stir processed 6061-Al and 6061-Al doped with B4C particles via FSP against 52100 bearing steel balls under dry sliding conditions. The incorporation of particles not only reduced friction by 30% but also reduced wear by 2 orders of magnitude compared to unprocessed base and FSP material without particles incorporation. FSP alone without particles addition did not have a significant effect on the tribological behavior of the tested aluminum alloy.


Author(s):  
R. A. Waikar ◽  
Y. B. Guo

Machining-induced surface topography has a significant effect on tribological performance of machined components in sliding contact. However, the effect of different surface topography by turning versus grinding on tribological performance has received very little attention. In this study four types of surface topography by turning and grinding AISI 52100 bearing steel (62 HRc) were prepared and characterized to study its effect on friction and wear in sliding contact. Dry and lubricated reciprocating sliding wear tests with an on-line acoustic emission (AE) sensor were carried out using a ball-on-disk tribometer. The experimental results have shown that: (i) the turned surfaces, regardless of the presence of a white layer, yield smaller friction of coefficients in sliding along feed marks than across sliding at both dry and lubricated conditions. However, the opposite hold true for the ground surfaces; (ii) friction of coefficients (0.6∼0.8) at dry conditions is higher for both turned and ground fresh surfaces than their white layer counterparts regardless of sliding direction. At lubricated conditions, Friction of coefficients (0.1∼0.12) are smaller for the both turned and ground fresh surfaces than the white layer surfaces in along sliding, while it is equivalent in across sliding; (iii) the trends of acoustic amplitude amplitude are consistent with those of frictional coefficients for the turned or ground surfaces at dry conditions. Similar trends are also true for the turned surfaces at lubricated conditions, but not for the ground surfaces; and (iv) the wear debris on the track may act as solid lubricants to reduce the sliding frictional coefficient. Machining induced white layers leads to a better wear resistance than the fresh surfaces in either along or across sliding.


2011 ◽  
Vol 487 ◽  
pp. 155-159
Author(s):  
Bin Shen ◽  
Fang Hong Sun ◽  
Zhi Ming Zhang

The tribological performance of conventional microcrystalline diamond (MCD) film and diamond-like carbon (DLC) film is investigated comparatively under water lubricating condition. The MCD and DLC film are deposited on cobalt cemented tungsten carbide (WC-Co) substrate using the hot filament chemical vapor deposition (HFCVD) method and the vacuum arc discharge with a graphite cathode respectively. Scanning electron microscopy (SEM), white light interferometer, and Raman spectra are employed to characterize as-deposited MCD and DLC samples. The friction tests are carried out on a ball-on-plate reciprocating friction tester, where the sliding process is conducted under water lubricating condition. Silicon nitride, tungsten carbide, ball-bearing steel and copper are used as counterpart materials. The results indicate that DLC film always exhibits lower friction coefficient than MCD film under water lubricating condition, except the case of sliding against the silicon nitride, in which DLC film is worn out very rapidly and thus leads to the high friction coefficient. The wear resistance of DLC film under water lubricating condition is significantly poorer than that of MCD film. While sliding against silicon nitride, tungsten carbide, ball-bearing steel and copper, its wear rate is calculated as 3.67´10-7mm3N-1m-1, 9.31´10-9mm3N-1m-1, 3.54´10-7mm3N-1m-1, and 4.97´10-8mm3N-1m-1respectively. Comparatively, no measurable wear track can be found on the worn surface of MCD films.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 928
Author(s):  
Elisabeth Guenther ◽  
Moritz Kahlert ◽  
Malte Vollmer ◽  
Thomas Niendorf ◽  
Christian Greiner

Additive manufacturing of metallic tribological components offers unprecedented degrees of freedom, but the surface roughness of most as-printed surfaces impedes the direct applicability of such structures, and postprocessing is necessary. Here, the tribological performance of AISI H13 steel samples was studied. These were additively manufactured through laser powder bed fusion (L-PBF), also referred to as selective laser melting (SLM). Samples were tested in four different surface conditions: as-printed, polished, ground and polished, and laser-surface-textured (LST) with round dimples. Friction experiments were conducted in a pin-on-disk fashion against bearing steel disks under lubrication with an additive-free mineral base oil for sliding speeds between 20 and 170 mm/s. Results demonstrated that, among the four surface treatments, grinding and polishing resulted in the lowest friction coefficient, followed by the as-printed state, while both polishing alone and laser-surface texturing increased the friction coefficient. Surprisingly, direct correlation between surface roughness and friction coefficient, i.e., the rougher the surface was, the higher the friction force, was not observed. Wear was minimal in all cases and below what could be detected by gravimetrical means. These results highlight the need for an adequate post-processing treatment of additively manufactured parts that are to be employed in tribological systems.


2016 ◽  
Vol 68 (2) ◽  
pp. 278-286 ◽  
Author(s):  
HuLin Li ◽  
Zhongwei Yin ◽  
Dan Jiang ◽  
YongJin Li

Purpose – The purpose of this paper is to achieve attractive fabric composites with excellent tribological performance and investigate the wear mechanisms of these fabric composites sliding against bearing steel pins under dry sliding process. Design/methodology/approach – Five different weave density composites were prepared, and the tribological behaviors of these composites were studied at different testing conditions. Scanning electron microscopy, laser microscopy (three-dimensional profile measurements) and energy-dispersive X-ray spectrometry were used to analyze the worn surface morphology, wear volume and elemental content of the transfer films, respectively. Findings – The composite weave density serves an important influence on tribological behavior. Generally, the wear rate of each composite increased with increasing weave density, and the friction coefficient of each composite decreased with increasing weave density. Originality/value – Nanoparticle-filled hybrid polytetrafluoroethylene/Kevlar fabric composites with proper weave density have exhibited superior tribological properties in dry sliding conditions. The results that obtained in this paper may offer a reference for others who intend to achieve attractive fabric composites with excellent tribological performance.


Sign in / Sign up

Export Citation Format

Share Document