scholarly journals In Vitro Evaluation of Biologically Derived Hydroxyapatite Coatings Manufactured by High Velocity Suspension Spraying

Author(s):  
M. Blum ◽  
M. Sayed ◽  
E. M. Mahmoud ◽  
A. Killinger ◽  
R. Gadow ◽  
...  

AbstractThis investigation aims to study a novel biologically derived coating applied on Ti alloy substrates. Obtained from a low-cost fish bone resource, a nanocrystalline hydroxyapatite has been synthesized and converted to an organic suspension. Coating was then manufactured by a high-velocity suspension flame spray process. The microstructure, phase composition, coating thickness, and roughness of hydroxyapatite (HA)-coated samples were studied. The results indicated the presence of both hydroxyapatite and β-tricalcium phosphate phases and the final coating layer was uniform and dense. In vitro bioactivity and biodegradability of the HA/Ti composite samples were estimated by immersion in simulated body fluid. Remarkable reductions in Ca2+ and PO43− ion concentrations were observed as well as low weight loss percentage and a slight variation in the pH value, indicating the generation of an apatite layer on the surface of all studied samples. Scanning electron microscopy, energy-dispersive x-ray analysis, and inductively coupled plasma–optical emission spectrometry confirm these results. Thus biological derived HA coatings are a promising candidate to enhance bioactivity and biodegradability of bone implants. To demonstrate feasibility on commercial medical components, a medical screw was coated and evaluated.

Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 31 ◽  
Author(s):  
Jorge González-Rodríguez ◽  
Lucía Fernández ◽  
Yanina B. Bava ◽  
David Buceta ◽  
Carlos Vázquez-Vázquez ◽  
...  

Emerging contaminants (ECs) represent a wide range of compounds, whose complete elimination from wastewaters by conventional methods is not always guaranteed, posing human and environmental risks. Advanced oxidation processes (AOPs), based on the generation of highly oxidizing species, lead to the degradation of these ECs. In this context, TiO2 and ZnO are the most widely used inorganic photocatalysts, mainly due to their low cost and wide availability. The addition of small amounts of nanoclusters may imply enhanced light absorption and an attenuation effect on the recombination rate of electron/hole pairs, resulting in improved photocatalytic activity. In this work, we propose the use of silver nanoclusters deposited on ZnO nanoparticles (ZnO–Ag), with a view to evaluating their catalytic activity under both ultraviolet A (UVA) and visible light, in order to reduce energetic requirements in prospective applications on a larger scale. The catalysts were produced and then characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and inductively coupled plasma-optical emission spectrometry (ICP-OES). As proof of concept of the capacity of photocatalysts doped with nanoclusters, experiments were carried out to remove the azo dye Orange II (OII). The results demonstrated the high photocatalytic efficiency achieved thanks to the incorporation of nanoclusters, especially evident in the experiments performed under white light.


Proceedings ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 6
Author(s):  
Ta Anh Tuan ◽  
Elena V. Guseva ◽  
Le Hong Phuc ◽  
Nguyen Quan Hien ◽  
Nguyen Viet Long ◽  
...  

Bioactive glasses 70SiO2–(30-x)CaO–xZnO (x = 1, 3, 5 mol.%) were prepared by the acid-free hydrothermal method in keeping with green chemical technology. The synthetic glasses were investigated by TG-DSC, BET, XRD, and SEM–EDX methods. All synthetic glasses present mesoporous structures consisting of aggregates of nanoparticles. The bioactivity of synthetic glasses was confirmed through the formation of the hydroxyapatite phase after an in vitro experiment in simulated body fluid (SBF) solution. The effect of Zn addition is shown through the decrease in the bioactivity of synthetic glasses. Additionally, the inductively coupled plasma optical emission spectrometry (ICP-OES) analysis indicates that the Zn ions were released from the glassy networks during in vitro experiments, and they act as Zn(OH)2 suspended precipitation to inhibit the apatite deposition. The in vitro experiment in cell culture matter was performed for SaOS2 and Eahy929 cells. The results confirm the biocompatibility of synthetic glasses and the role of Zn addition in the proliferation of living cells.


2017 ◽  
Vol 43 (2) ◽  
pp. 37-43 ◽  
Author(s):  
Yusuf Uzun ◽  
Tekin Şahan

Abstract Removal of mercury(II) (Hg(II)) from aqueous media by a new biosorbent was carried out. Natural Polyporus squamosus fungus, which according to the literature has not been used for the purpose of Hg(II) biosorption before, was utilized as a low-cost biosorbent, and the biosorption conditions were analyzed by response surface methodology (RSM). Medium parameters which were expected to affect the biosorption of Hg(II) were determined to be initial pH, initial Hg(II) concentration (Co), temperature (T (°C)), and contact time (min). All experiments were carried out in a batch system using 250 mL fl asks containing 100 mL solution with a magnetic stirrer. The Hg(II) concentrations remaining in fi ltration solutions after biosorption were analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Based on the RSM results, the optimal conditions were found to be 5.30, 47.39 mg/L, 20°C and 254.9 min for pH, Co, T (°C), and contact time, respectively. Under these optimal conditions, the maximum biosorbed amount and the biosorption yield were calculated to be 3.54 mg/g and 35.37%, respectively. This result was confi rmed by experiments. This result shows that Polyporus squamosus has a specifi c affi nity for Hg ions. Under optimal conditions, by increasing the amount of Polyporus squamosus used, it can be concluded that all Hg ions will be removed


Beverages ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 4 ◽  
Author(s):  
Angela Soares ◽  
Nathalia M. Barros ◽  
Tatiana D Saint’Pierre ◽  
Juliana De P. Lima ◽  
Verônica Calado ◽  
...  

Micronutrient deficiencies are of great public health and socioeconomic importance. Food fortification has been widely used as a simple low-cost resource to increase mineral intake. Considering that coffee is the most consumed food product worldwide, in this study, C. arabica and C. canephora seeds were roasted, ground, and fortified with three salts of iron, zinc, and calcium as part of the selection of appropriate mineral vehicles for fortification. After ranking the performance through a test by a trained tasters’ panel, only two salts for each mineral remained. Mineral recoveries were evaluated by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in filtered (paper and nylon filters) and espresso brews. The best mean recoveries for each mineral in espresso brew prepared from fortified coffees were: 80.8% of iron as ferrous bisglycinate chelate, 75.4% of zinc as zinc lactate, and 72.1% of calcium as calcium lactate. These better ranked salts by the tasters’ panel. In filtered brews, mean recovery values of 51.1%, 47.6%, and 51.6% were obtained for the same mineral salts, respectively. No difference or very small differences were observed between species and types of filter. The results implications are discussed.


Author(s):  
Mohamed Saad Bala ◽  
Liyana Maryam ◽  
Basma Yahya Alashwal ◽  
Arun Gupta ◽  
Triveni Soubam ◽  
...  

There is a pressing need to develop wound healing spray that can utilize it for the treatment of skin rebuilding. Wound healing involves the regeneration and tissue repair process with the sequence of molecular and cellular measures that ensue the onset of a tissue lesion to reestablish the damaged tissue. This study aimed to produce the best formulation of keratin-based wound spray which was prepared by varying of the keratin concentration to suit for human nature skin and can be promoted for the wound healing process. A wound-healing bouquet was prepared with keratin as the primary substituent mixed with 2-phenyl ethanol, methyl lactate, and methyl propanediol to rejuvenate the skin effectively. The keratin has been extracted from chicken feathers which have high levels of protein source. Keratinocytes containing keratin migrate from the wound edges to cover the wound during the remedial process. The samples are characterized by Fourier Transform Infrared Spectroscopy (FTIR) to determine the functional groups and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) for heavy metal analysis. The characteristics of keratin-based wound spray from chicken feather made it an effective wound care product. The pH value of the formulation possesses a little acidic nature (pH 5.56) where is considered an appropriate nature to prevent the growth of bacteria. This wound healing spray gives a suitable domain of cure efficiency to the injured region as they have ideal levels of pH.


2020 ◽  
Vol 11 (4) ◽  
pp. 6085-6088
Author(s):  
Sridevi J ◽  
Madhavan R ◽  
Prasad V V P ◽  
Kanakavalli K

Veera ayachenduram (VAC) is a metallo-mineral drug cited in Siddha text literature KannusamiyamparambaraiVaithiyam. The study aimed to standardises the VAC by evaluating its physicochemical characters such as colour, ash value, pH value analyses the heavy metal composition in modern instrumental techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) and to find out the particle size through scanning electron microscopy (SEM) and. The total ash value was found to be 7.7% w/w, acid-insoluble ash value is 1.25% w/w, water-soluble ash value is 25.32% w/w, and The pH value is 6.5. The ICP-OES reveals that heavy metals such as mercury, lead, arsenic, and cadmium are within the limit. High-resolution SEM analysis of the drug indicated the existence of nanoparticles.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 283
Author(s):  
Ta Anh Tuan ◽  
Elena V. Guseva ◽  
Nguyen Anh Tien ◽  
Ho Tan Dat ◽  
Bui Xuan Vuong

The paper focuses on the acid-free hydrothermal process for the synthesis of bioactive glass. The new method avoids the use of harmful acid catalysts, which are usually used in the sol-gel process. On the other hand, the processing time was reduced compared with the sol-gel method. A well-known ternary bioactive glass 58SiO2-33CaO-9P2O5 (wt%), which has been widely synthesized through the sol-gel method, was selected to apply to this new process. Thermal behavior, textural property, phase composition, morphology, and ionic exchange were investigated by thermal analysis, N2 adsorption/desorption, XRD, FTIR, SEM, and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The bioactivity and biocompatibility of synthetic bioactive glass were evaluated by in vitro experiments with a simulated body fluid (SBF) solution and cell culture medium. The obtained results confirmed that the acid-free hydrothermal process is one of the ideal methods for preparing ternary bioactive glass.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1256
Author(s):  
Maja Welna ◽  
Anna Szymczycha-Madeja ◽  
Pawel Pohl

Commercially bottled birch saps (BSs) were analyzed for several nutrient (Ca, Cu, Fe, Mg, and Zn) and toxic (As, Cd, Ni, and Pb) elements using inductively coupled plasma optical emission spectrometry (ICP OES). The method was validated under the conditions of several sample preparation procedures, including a traditional digestion as well as alternative non-digestion schemes. It was found that the direct analysis of untreated BSs gives the best results, i.e., limits of detection at 0.02–5.8 ng mL−1, precision better than 5%, accuracy from 98.0% to 104.5% and determination of 12 elements in a short time (~1 min per sample). The multi-element analysis of nine commercially available bottled BSs showed that they contained mainly Mg and Ca, small quantities of Mn, Zn, Cu, and Fe, but are free from toxic elements such as As, Cd, Ni, and Pb. Additionally, the nutritional value of BSs was examined using in vitro gastro-intestinal digestion (GID) to determine the bioaccessible fraction of elements. Accordingly, bioaccessibility of nutritious ones (Ca, Cu, Fe, Mg, Zn) was <40%. Drinking daily 1 L of BSs covered <2.5% of recommended dietary intakes (RDIs) of the aforementioned elements. Only the bioaccessibility of Mn highly contributes to its RDI.


Sign in / Sign up

Export Citation Format

Share Document