scholarly journals Investigation of Mechanical Properties of Twin Wire Arc Repair of Cast Iron Components

Author(s):  
K. DePalma ◽  
M. Walluk ◽  
L. P. Martin ◽  
K. Sisak
2019 ◽  
Vol 16 (2) ◽  
Author(s):  
Amin Suhadi ◽  
Seodihono

Production technology of metal casting industry in Indonesia needs to be improved, especially in the manufacturing of spare parts and box engine made of gray cast iron which has various wall thick such as dove tale construction. Microstructure of gray cast iron is influenced by cooling rate during casting, chemical composition and melting treatment process (inoculation). The part which has the thinnest thickness has the fastest cooling therefore, the grain boundary is smaller compared to other section. As a result this part has highest hardness and difficult to be machined. This research is conducted to solve this problem by modifying melting and solidification treatment process. The research starting from micro structure analysis, composition and mechanical properties tests on the product, and then conducting modification treatment through Taguchi method approach. Experimental results obtained show that the best level settings to control factors which affect to the uniformity of the microstructure and mechanical properties in gray cast iron is the addition of seed inoculation super ® 75, as much as 0.25% with the method of inoculation material entering into the Transfer Ladle.Teknologi produksi pada industri pengecoran di Indonesia masih membutuhkan perbaikan terutama dalam pembuatan komponen mesin perkakas dan peralatan pabrik yang terbuat dari besi tuang kelabu yang mempunyai variasi ketebalan yang besar seperti konstruksi ekor burung (dove tale). Pada pengecoran, struktur mikro dari besi tuang kelabu sangat dipengaruhi oleh kecepatan pendinginan, komposisi kimia dan proses perlakuan pada logam cair (inokulasi). Bagian yang mempunyai ukuran paling tipis mempunyai kecepatan pendinigan paling tinggi karena itu ukuran butirnya jauh lebih kecil dari bagian lain, akibatnya bagian ini mempunyai kekerasan lebih tinggi dan sulit dilakukan pengerjaan mesin. Penelitian ini bertujuan untuk memperbaiki hal ini yang terjadi pada dove taledengan cara memodifikasi proses perlakuan pada cairan besi dan proses pendinginan. Penelitian dimulai dari analisa struktur mikro, pengujian komposisi kimia, pengujian sifat mekanis pada produk kemudian dilakukan modifikasi menggunakan pendekatan metode statistik Taguchi. Hasil penelitian menunjukkan bahwa pengaturan terbaik yang dapat diperoleh untuk mendapatkan keseragaman struktur mikro dan sifat mekanis pada pengecoran besi tuang kelabu adalah penambahan seed inoculation super ® 75, sebesar 0.25% dengan metode pemasukan inokulasi kedalam Ladle pengangkut logam cair.Keywords: carbon, micro structure, hardness, inoculation


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


2012 ◽  
Vol 31 ◽  
pp. 676-681 ◽  
Author(s):  
J. Feng ◽  
B. Xiao ◽  
R. Zhou ◽  
Y.H. Jiang ◽  
Q.H. Cen

1984 ◽  
Vol 34 ◽  
Author(s):  
P. L. Roy ◽  
A. K. Chakrabart ◽  
P. Banerjee

ABSTRACTMinor additions (0.05-0.2 wt.%) of sodium chloride, hexachloroethane and elemental sulphur to commercial white iron melts have been found to enhance the kinetics of first stage graphitisation during subsequent annealing of white iron samples. The optimum dose of sodium chloride and hexachloroethane addition is around 0.1%. Yield strength and ductility of annealed test bars treated with NaCl or C2Cl6 compare favourably with those of untreated test bars. Sulphur treatment causes slight deterioration in mechanical properties. Fully grown nodules in both treated and untreated samples appear porous under SEM. Possible mechanisms of acceleration of graphitisation in the treated samples have been suggested.


2016 ◽  
Vol 78 ◽  
pp. 01081
Author(s):  
A.K. Muzafar ◽  
M.M. Rashidi ◽  
I. Mahadzir ◽  
Z. Shayfull

2014 ◽  
Vol 989-994 ◽  
pp. 177-180
Author(s):  
Hao Yang ◽  
Jian Hua Zhang ◽  
Guo Yan Sun ◽  
Yi Zhang

For the characteristic that the mechanical properties of resin composite are lower than cast iron, steel fibers are used to improve its properties in this paper. A weak interfacial bonding strength between steel fibers and resin indicates that steel fibers’ property cannot perform well in the polymer. In order to improve the interfacial bonding strength, four methods of surface treatment, phosphating, acid pickling, oxidation, and coupling are applied to steel fibers, and the corresponding pull-off tests are carried out to compare with untreated steel fibers. Research results show that the maximum interfacial bonding strength is increased by 45.1% after coupling treatment.


Sign in / Sign up

Export Citation Format

Share Document