Soil carbon characterization along the profile of two forest soils under Quercus pyrenaica

2018 ◽  
Vol 31 (2) ◽  
pp. 591-600 ◽  
Author(s):  
A. P. Fernández-Getino ◽  
J. L. Alonso-Prados ◽  
M. I. Santín-Montanyá
2020 ◽  
Vol 09 (04) ◽  
pp. 400-409
Author(s):  
Chinonso Millicent Chris-Emenyonu ◽  
Emmanuel Uzoma Onweremadu ◽  
John Didacus Njoku ◽  
Chioma Mildred Ahukaemere ◽  
Benarden Ngozi Aririguzo

2003 ◽  
Vol 9 (3) ◽  
pp. 358-370 ◽  
Author(s):  
I. CALLESEN ◽  
J. LISKI ◽  
K. RAULUND-RASMUSSEN ◽  
M. T. OLSSON ◽  
L. TAU-STRAND ◽  
...  

2014 ◽  
Vol 94 (2) ◽  
pp. 157-168 ◽  
Author(s):  
Caroline M. Preston ◽  
Charlotte E. Norris ◽  
Guy M. Bernard ◽  
David W. Beilman ◽  
Sylvie A. Quideau ◽  
...  

Preston, C. M., Norris, C. E., Bernard, G. M., Beilman, D. W., Quideau, S. A. and Wasylishen, R. E. 2014. Carbon and nitrogen in the silt-size fraction and its HCl-hydrolysis residues from coarse-textured Canadian boreal forest soils. Can. J. Soil Sci. 94: 157–168. Improving the capacity to predict changes in soil carbon (C) stocks in the Canadian boreal forest requires better information on the characteristics and age of soil carbon, especially more slowly cycling C in mineral soil. We characterized C in the silt-size fraction, as representative of C stabilized by mineral association, previously isolated in a study of soil profiles of four sandy boreal jack pine sites. Silt-size fraction accounted for 13–31% of the total soil C and 12–51% of the total soil N content. Solid-state 13C nuclear magnetic resonance spectroscopy showed that silt C was mostly dominated by alkyl and O,N-alkyl C, with low proportions of aryl C in most samples. Thus, despite the importance of fire in this region, there was little evidence of storage of pyrogenic C. We used HCl hydrolysis to isolate the oldest C within the silt-size fraction. Consistent with previous studies, this procedure removed 21–74% of C and 74–93% of N, leaving residues composed mainly of alkyl and aryl C. However, it failed to isolate consistently old C; 11 out of 16 samples had recent 14C ages (fraction of modern 14C > 1), although C-horizon samples were older, with Δ14C from –17 to –476‰. Our results indicate relatively young ages for C associated with the silt-size fractions in these sites, for which mineral soil C storage may be primarily limited by good drainage and coarse soil texture, exacerbated by losses due to periodic wildfire.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-15
Author(s):  
A.P. Geraskina ◽  

To date, forest ecology has not made any clear conclusions regarding the impact of large saprophagous invertebrates such as earthworms on soil carbon dynamics. Some authors claim that earthworm activities result in decreased carbon accumulation. Other studies show that earthworms contribute to soil carbon accumulation. At the same time, many studies do not take into account the differences between trophic and digging activity of different morpho-ecological groups of earthworms in different soil horizons. The objective of this study was to carry out differentiated assessment of the impact of different morpho-ecological groups of earthworms on carbon accumulation and correspondent soil parameters (nitrogen content and С/N ratio) throughout the change in forest succession status. Field operations were performed in the spring and summer of 2016 and 2018 in three regions: Bryansk Oblast (Bryansk Forest reserve), Moscow Oblast (Moskva–Oka plain, Valuyevsky urban forest) and Northwest Caucasus (Krasnodar Krai, Apsheron forestry; Republic of Adygeya, Caucasian Biosphere Reserve). Three main stages of coniferous-broadleaf forest restoration after clear cuttings were identified in each region. Three test plots 50х50 m were allocated for each stage; geobotanical and soil descriptions as well as earthworm registration were carried out on each plot. It was found out that during the change in forest succession status the species composition and the set of morpho-ecological groups of earthworms became more complicated, but there was no successive replacement of any groups with others. Ambiguous effects of different morpho-ecological groups of earthworms on carbon accumulation in forest soils were revealed. Negative correlation was found between the total biomass of earthworms feeding on the soil surface (epigeic, epi-endogeic and anecic species) and litter store. In the humus horizon, the biomass of epi-endogeic species was positively correlated with the content of carbon. C/N ratio and nitrogen content are unidirectionally correlated with the biomass of earthworms in the horizons of their activity: with an increase in the biomass of earthworms of different morpho-ecological groups, the C/N ratio decreases, and the nitrogen content increases.


2016 ◽  
Vol 8 (6) ◽  
pp. 8
Author(s):  
Christina Tonitto ◽  
Ali Volkan Bilgili

<p>Traditional combustion methods for assessing soil carbon (C) and nitrogen (N) stocks are time consuming and expensive; visible and near-infrared (VNIR) methods offer a quick and inexpensive alternative for establishing soil C and N concentrations. We compared combustion and spectral methods for quantifying soil carbon and nitrogen concentrations. We sampled organic and mineral soil horizons in managed and old-growth Douglas-fir (<em>Pseudotsuga menziesii</em>) forests in western Oregon. We applied combustion methods to determine total soil carbon and nitrogen concentrations of these samples. We then applied VNIR methods to derive a reference spectral library for analyzing Pacific Northwest (PNW) andesitic forest soils. Our spectral analysis confirmed that visible range spectra (especially in the 650-750 nm range) are the most useful for distinguishing differences in sample soil organic matter content. Our results provide a robust calibration model for applying spectral analysis combined with Partial Least Square Regression (PLSR) to quantify carbon and nitrogen stocks in PNW Douglas-fir forest soils. Model validation resulted in R<sup>2</sup> values ranging from 0.92 to 0.95 for C and from 0.73 to 0.84 for N.</p>


2019 ◽  
Author(s):  
Axel Don ◽  
Christina Hagen ◽  
Erik Grüneberg ◽  
Cora Vos

Abstract. Most forest soils are characterised by a steep carbon gradient from the forest floor to the mineral soil, indicating that carbon is prevented from entry into the soil. Bioturbation can help incorporate litter-derived carbon into the mineral soil. Wild boar are effective at mixing and grubbing in the soil and wild boar populations are increasing in many parts of the world. In a six-year field study, we investigated the effect of wild boar bioturbation on the stocks and stability of soil organic carbon in two forest areas. Regular bioturbation mimicking grubbing by wild boar was performed artificially in 23 plots and the organic layer and mineral soil down to 15 cm depth were then sampled. No significant changes in soil organic carbon stocks were detected in the bioturbation plots compared with non-disturbed reference plots. However, around 50 % of forest floor carbon was transferred with bioturbation to mineral soil carbon and the stock of stabilised mineral-associated carbon increased by 28 %. Thus, a large proportion of the labile carbon in the forest floor was transformed into more stable carbon. Carbon saturation of mineral surfaces was not detected, but carbon loading per unit mineral surface increased by on average 66 % in the forest floor due to bioturbation. This indicates that mineral forest soils have non-used capacity to stabilise and store carbon. Transfer of aboveground litter into the mineral soil is the only rate-limiting process. Wild boar can help to speed up this process with their grubbing activity.


2011 ◽  
Vol 222 (17) ◽  
pp. 3020-3032 ◽  
Author(s):  
Carina Ortiz ◽  
Erik Karltun ◽  
Johan Stendahl ◽  
Annemieke I. Gärdenäs ◽  
Göran I. Ågren

Sign in / Sign up

Export Citation Format

Share Document