scholarly journals Soil Carbon Sequestrations in Forest Soils in Relation to Parent Material and Soil Depth in South-Eastern Nigeria

2020 ◽  
Vol 09 (04) ◽  
pp. 400-409
Author(s):  
Chinonso Millicent Chris-Emenyonu ◽  
Emmanuel Uzoma Onweremadu ◽  
John Didacus Njoku ◽  
Chioma Mildred Ahukaemere ◽  
Benarden Ngozi Aririguzo
2020 ◽  
Author(s):  
Benjamin Bukombe ◽  
Laurent Kidinda ◽  
Alison Hoyt ◽  
Cordula Vogel ◽  
Marijn Bauters ◽  
...  

<p>Tropical ecosystems and the soils therein have been reported as one of the most important and largest terrestrial carbon (C) pools and are considered important climate regulator. Carbon stabilization mechanisms in these ecosystems are often complex, as these mechanisms crucially rely on the interplay of geology, topography, climate, and biology. Future predictions of the perturbation of the soil carbon pool ultimately depend on our mechanistic understanding of these complex interactions.</p><p>Using laboratory incubation experiments, we investigated if carbon release from soils through heterotrophic respiration in the African highland forests of the Eastern Congo Basin follows predictable patterns related to topography, soil depth or geochemical soil properties that can be described at the landscape scale and ultimately be used to improve the spatial accuracy of soil C respiration in mechanistic models. In general, soils developed on basalt and granite parent material (mafic and felsic geochemistry of parent material) showed significantly (p <0.05) higher specific respiration than soils developed on sedimentary rocks (mixed geochemistry) with highest rates measured for soils developed on granite. For soils developed on basalt, specific respiration decreased two-fold with soil depth, but not for soils developed on granite or sedimentary rocks. No significant differences in respiration under tropical forest were found in relation to topography for any soil and geochemical background.</p><p>Using a non-linear,  stochastic gradient boosting machine learning approach we show that soil biological, physical and chemical properties can predict the pattern of specific soil respiration (R<sup>2</sup>=0.41, p<0.05). An assessment of the relative importance of the included predictors for soil respiration resulted in 43 % of the model being driven by geochemistry (pedogenic oxides, nutrient availability), 12 % driven by soil texture and clay mineralogy, 34 % by microbial biomass, C:N, and C:P ratios and 11 % by topographic indices. </p><p>We conclude that, in order to explain soil C respiration patterns in tropical forests, a complex set of variables need to be considered that differs depending on the local bedrock chemistry. Its effect is likely related to the varying strength of C stabilization with minerals as well as nutrient availability that might drive C input patterns and microbial turnover.</p>


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 309
Author(s):  
Elena A. Mikhailova ◽  
Hamdi A. Zurqani ◽  
Christopher J. Post ◽  
Mark A. Schlautman ◽  
Gregory C. Post ◽  
...  

Sustainable management of soil carbon (C) at the state level requires valuation of soil C regulating ecosystem services (ES) and disservices (ED). The objective of this study was to assess the value of regulating ES from soil organic carbon (SOC), soil inorganic carbon (SIC), and total soil carbon (TSC) stocks, based on the concept of the avoided social cost of carbon dioxide (CO2) emissions for the state of South Carolina (SC) in the United States of America (U.S.A.) by soil order, soil depth (0–200 cm), region and county using information from the State Soil Geographic (STATSGO) database. The total estimated monetary mid-point value for TSC in the state of South Carolina was $124.36B (i.e., $124.36 billion U.S. dollars, where B = billion = 109), $107.14B for SOC, and $17.22B for SIC. Soil orders with the highest midpoint value for SOC were: Ultisols ($64.35B), Histosols ($11.22B), and Inceptisols ($10.31B). Soil orders with the highest midpoint value for SIC were: Inceptisols ($5.91B), Entisols ($5.53B), and Alfisols ($5.0B). Soil orders with the highest midpoint value for TSC were: Ultisols ($64.35B), Inceptisols ($16.22B), and Entisols ($14.65B). The regions with the highest midpoint SOC values were: Pee Dee ($34.24B), Low Country ($32.17B), and Midlands ($29.24B). The regions with the highest midpoint SIC values were: Low Country ($5.69B), Midlands ($5.55B), and Pee Dee ($4.67B). The regions with the highest midpoint TSC values were: Low Country ($37.86B), Pee Dee ($36.91B), and Midlands ($34.79B). The counties with the highest midpoint SOC values were Colleton ($5.44B), Horry ($5.37B), and Berkeley ($4.12B). The counties with the highest midpoint SIC values were Charleston ($1.46B), Georgetown ($852.81M, where M = million = 106), and Horry ($843.18M). The counties with the highest midpoint TSC values were Horry ($6.22B), Colleton ($6.02B), and Georgetown ($4.87B). Administrative areas (e.g., counties, regions) combined with pedodiversity concepts can provide useful information to design cost-efficient policies to manage soil carbon regulating ES at the state level.


2021 ◽  
Author(s):  
Jianwu LI ◽  
Jinlin Yang ◽  
Ganlin Zhang

Abstract Soil is important contributor to global biogeochemical cycles and often receives anthropogenic Pb contamination. Hainan soil chronosequence developed on basalt had provided a good opportunity to identify and quantify the relative contributions of Pb sources in remote tropical areas. The results revealed that Pb concentrations and isotopic ratios of the soils were clearly affected by anthropogenic source. The Pb concentrations and percentage changes of Pb/Th ratios showed significantly Pb enrichment. The low 206Pb/207Pb values of upper soils indicated a significant addition of extraneous Pb, whereas deeper soils showed a dominantly basaltic source. The 208Pb/206Pb vs. 206Pb/207Pb diagram of soils clearly indicated inputs of parent material and anthropogenic Pb sources. We also calculated the mass fractions of anthropogenic-derived Pb (ƒPbanthropogenic) based on isotope mass balance. The ƒPbanthropogenic values showed a generally decreasing trend with soil depth, implying a significant addition of anthropogenic Pb in top soils. The contribution of anthropogenic Pb in Hainan soil chronosequence highlighted the significance of anthropogenic contamination to soils globally.


2017 ◽  
Vol 9 (5) ◽  
pp. 83
Author(s):  
Ngowari Jaja ◽  
Monday Mbila ◽  
Yong Wang

Silvicultural thinning and burning are common management practices that are widely used to address ecosystem problems such as tree stocking and general forest health. However, high-severity fire has variable effects on soils, resulting in damages which are directly or indirectly reflected on the trace metal chemistry of the soil. This study was conducted to evaluate the trace metal variation at the Bankhead National Forest in Northern Alabama following the silvicultural thinning and burning. The experimental site had treatments consisting of two burning patterns and three levels of thinning as part of an overall treatment of three burning patterns and three levels of thinning applied to nine treatment plots to fit a completely randomized block design experiment. Four treatments sites were used for this study and samples were collected from soil profile pits excavated at representative plots within each treatment. The samples were analyzed for trace metals-As, Cu, Ni, Zn and Pb-using Perkin Elmer 2100 ICP-OES. Post treatment samples indicated that the trace metal concentrations generally decreased with soil depth. Copper, Ni, and Zn at the Pre-burn site gradually increased with depth to a maximum concentration at about 50 cm below the soil surface. Arsenic in the surface horizons increased by 156% in the burn-only sites, 54% in the thin-only treatment, 30% for the burn and thin treatments. Such differences were unlikely due to differences in the geochemistry of the parent material, but likely due to anthropogenic activities and possibly the forest management practices in question.


2013 ◽  
Vol 6 (6) ◽  
pp. 2153-2163 ◽  
Author(s):  
B. Guenet ◽  
F. E. Moyano ◽  
N. Vuichard ◽  
G. J. D. Kirk ◽  
P. H. Bellamy ◽  
...  

Abstract. A widespread decrease of the topsoil carbon content was observed over England and Wales during the period 1978–2003 in the National Soil Inventory (NSI), amounting to a carbon loss of 4.44 Tg yr−1 over 141 550 km2. Subsequent modelling studies have shown that changes in temperature and precipitation could only account for a small part of the observed decrease, and therefore that changes in land use and management and resulting changes in heterotrophic respiration or net primary productivity were the main causes. So far, all the models used to reproduce the NSI data have not accounted for plant–soil interactions and have only been soil carbon models with carbon inputs forced by data. Here, we use three different versions of a process-based coupled soil–vegetation model called ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems), in order to separate the effect of trends in soil carbon input from soil carbon mineralization induced by climate trends over 1978–2003. The first version of the model (ORCHIDEE-AR5), used for IPCC-AR5 CMIP5 Earth System simulations, is based on three soil carbon pools defined with first-order decomposition kinetics, as in the CENTURY model. The second version (ORCHIDEE-AR5-PRIM) built for this study includes a relationship between litter carbon and decomposition rates, to reproduce a priming effect on decomposition. The last version (O-CN) takes into account N-related processes. Soil carbon decomposition in O-CN is based on CENTURY, but adds N limitations on litter decomposition. We performed regional gridded simulations with these three versions of the ORCHIDEE model over England and Wales. None of the three model versions was able to reproduce the observed NSI soil carbon trend. This suggests either that climate change is not the main driver for observed soil carbon losses or that the ORCHIDEE model even with priming or N effects on decomposition lacks the basic mechanisms to explain soil carbon change in response to climate, which would raise a caution flag about the ability of this type of model to project soil carbon changes in response to future warming. A third possible explanation could be that the NSI measurements made on the topsoil are not representative of the total soil carbon losses integrated over the entire soil depth, and thus cannot be compared with the model output.


2005 ◽  
Vol 2 (4) ◽  
pp. 1127-1157 ◽  
Author(s):  
K. Butterbach-Bahl ◽  
U. Berger ◽  
N. Brüggemann ◽  
J. Duyzer

Abstract. This study provides for the first time data on the stratification of NO and N2O production with soil depth under aerobic and anaerobic incubation conditions for different temperate forest sites in Germany (spruce, beech, clear-cut) and the Netherlands (Douglas fir). Results show that the NO and N2O production activity is highest in the forest floor and decreases exponentially with increasing soil depth. Under anaerobic incubation conditions NO and N2O production was in all soil layers up to 2-3 orders of magnitude higher then under aerobic incubation conditions. Furthermore, significant differences between sites could be demonstrated with respect to the magnitude or predominance of NO and N2O production. These were driven by stand properties (beech or spruce) or management (clear-cut versus control). With regard to CH4 the most striking result was the lack of CH4 uptake activity in soil samples taken from the Dutch Douglas fir site at Speulderbos, which is most likely a consequence of chronically high rates of atmospheric N deposition. In addition, we could also demonstrate that CH4 fluxes at the soil surface are obviously the result of simultaneously occurring uptake and production processes, since even under aerobic conditions a net production of CH4 in forest floor samples was found. The provided dataset will be very useful for the development and testing of process oriented models, since for the first time activity data stratified for several soil layers for N2O, NO, and CH4 production/oxidation activity for forest soils are provided.


2020 ◽  
Author(s):  
Markus Krüger ◽  
Karin Potthast ◽  
Beate Michalzik ◽  
Alexander Tischer ◽  
Kirsten Küsel ◽  
...  

AbstractNitrification in forest soils is often associated with increased leaching of nitrate to deeper soil layers with potential impacts on groundwater resources, further enhanced under scenarios of anthropogenic atmospheric nitrogen deposition and predicted weather extremes. We aimed to disentangle the relationships between soil nitrification potential, seepage-mediated nitrate leaching and the vertical translocation of nitrifiers in soils of a temperate mixed beech forest in central Germany before, during and after the severe summer drought 2018. Leaching of nitrate assessed below the litter layer and in 4, 16 and 30 cm soil depth showed high temporal and vertical variation with maxima at 16 and 30 cm during and after the drought period. Maximum of soil potential nitrification activity of 4.4 mg N kg-1 d-1 only partially coincided with maximum nitrate leaching of 10.5 kg N ha-2. Both ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were subject to translocation by seepage, and AOB decreased at least by half and AOA increased by one to three orders of magnitude in their abundance in seepage with increasing soil depth. On the level of the total bacterial population, an increasing trend with depth was also observed for Cand. Patescibacteria while Bacteroidetes were strongly mobilized from the litter layer but poorly transported further down. Despite stable population densities in soil over time, abundances of AOA, AOB and total bacteria in seepage increased by one order of magnitude after the onset of autumn rewetting. Predicted future higher frequency of drought periods in temperate regions may result in more frequent seepage-mediated seasonal flushes of nitrate and bacteria from forest soils. Moreover, the observed translocation patterns point to taxon-specific differences in the susceptibility to mobilization, suggesting that only selected topsoil derived microbial groups are likely to affect subsoil or groundwater microbial communities and their functional potential.


2018 ◽  
Vol 31 (2) ◽  
pp. 591-600 ◽  
Author(s):  
A. P. Fernández-Getino ◽  
J. L. Alonso-Prados ◽  
M. I. Santín-Montanyá

Bothalia ◽  
1978 ◽  
Vol 12 (3) ◽  
pp. 499-511 ◽  
Author(s):  
O. J. H. Bosch

Sample stands of vegetation occurring on the Sterkspruit and Estcourt soil forms in the south-eastern Orange Free State were compared by means of an ordination technicque (principal components analysis). The habitats of the various grass communities were compared to determine whether communities corresponding to one other develop under similar habitat conditions. The floristic composition of the vegetation on soils of the Sterkspruit and Estcourt forms are often similar, although the soil form and other habitat conditions differ markedly. The results of these investigations have shown that this could be due to compensation effects, which are the result of reciprocal interactions mainly between the moisture-determining factors such as soil texture, topography, effective soil depth and degree of erosion.


Sign in / Sign up

Export Citation Format

Share Document