Long-term application of K fertilizer and straw returning improve crop yield, absorptive capacity of K, and soil nutrient natural supplying capacity in North China

2011 ◽  
Vol 5 (4) ◽  
pp. 563-569 ◽  
Author(s):  
Limin Sun ◽  
Chunjie Li ◽  
Ping He ◽  
Mengchao Liu ◽  
Jinghui Hu
Author(s):  
Tianfu Han ◽  
Dongchu Li ◽  
Kailou Liu ◽  
Jing Huang ◽  
Lu Zhang ◽  
...  

Soil acidification is one of the major soil degradation phenomenon in tropical and subtropical region, which cause reductions in soil fertility, particularly potassium (K), and declines in crop yield. However, it remains unclear whether and how the status of K in soils and crops changes with the application of lime to alleviate soil acidification. Six treatments of long-term experiments (started 1990) in subtropical region were carried out. Regardless of fertilization regime, lime addition markedly increased grain and straw yields compared to those yields without lime application. Lime addition also led to significant decreases in the apparent K balances compared to soils without lime application. The agronomic K efficiency and partial factor productivity of K fertilizer both significantly increased after lime application. Lime addition reduced the soil exchangeable K (EK) content and stock, while increased soil non-exchangeable K (NEK) content and stock. Redundancy analysis showed that K input, lime, pH, and exchangeable calcium all significantly affected the K in soil and crops. Path analysis showed that lime indirectly influenced soil K (EK and NEK) by directly affecting soil pH, exchangeable calcium, K uptake and apparent K balances. These results suggest that lime addition is a viable strategy for improving crop yields and K fertilizer efficiency in degraded soils caused by acidification. Lime significant increased K uptake which lead to decreased soil EK content and stock. Additional, lime also increased soil NEK content and stock which was regulated by soil pH, exchangeable calcium, and crop growth.


2011 ◽  
Vol 356-360 ◽  
pp. 2523-2530 ◽  
Author(s):  
Zhi Chen Yang ◽  
Lian Di Zhou ◽  
Yi Zhong Lv ◽  
Hong Li

Long-term effects of inorganic and corn stalks organic nutrient sources on yield, soil organic carbon(SOC) and the relationship between crop yield and SOC were investigated in Dry-Land Farming Institute of Hebei Academy of Agricultural and Forestry Sciences, Hengshui, Hebei Province, China from 1981 to 2005. Hengshui is a part the North China Plain and the dominant cropping systems are Winter wheat-maize rotations. Recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. There were sixteen treatments applied to both wheat and maize seasons: Inorganic fertilizers as main plots and corn stalks as subplots and the main plot and subplot all have four levels expressed A and B respectively. So there are sixteen treatments with three replicates were set (A1,A2,A3,A4)*(B1,B2,B3,B4). After more than 20 years crop yield and SOC decreased in treatment of without fertilizers and only applicate corn stalks just sustain it. Combine application of inorganic fertilizers and corn stalks increase SOC and crop yield very strongly. For crop yield the more fertlizers the more increase. But the SOC will decrease as the more inorganiac fertlizer application and increase with the increase of corn stalks.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1233
Author(s):  
Jifu Li ◽  
Guoyu Gan ◽  
Xi Chen ◽  
Jialong Zou

The present study aims to assess the influences of long-term crop straw returning and recommended potassium fertilization on the dynamic change in rice and oilseed rape yield, soil properties, bacterial and fungal alpha diversity, and community composition in a rice–oilseed rape system. A long-term (2011–2020) field experiment was carried out in a selected paddy soil farmland in Jianghan Plain, central China. There were four treatments with three replications: NP, NPK, NPS, and NPKS, where nitrogen (N), phosphate (P), potassium (K), and (S) denote N fertilizer, P fertilizer, K fertilizer, and crop straw, respectively. Results showed that long-term K fertilization and crop straw returning could increase the crop yield at varying degrees for ten years. Compared with the NP treatment, the long-term crop straw incorporation with K fertilizer (NPKS treatment) was found to have the best effect, and the yield rates increased by 23.0% and 20.5% for rice and oilseed rape, respectively. The application of NPK fertilizer for ten years decreased the bacterial and fungal alpha diversity and the relative abundance of dominant bacterial and fungal taxa, whereas continuous straw incorporation had a contradictory effect. NPKS treatment significantly increased the relative abundance of some copiotrophic bacteria (Firmicutes, Gemmatimonadetes, and Proteobacteria) and fungi (Ascomycota). Available K, soil organic matter, dissolved organic carbon, and easily oxidized organic carbon were closely related to alterations in the composition of the dominant bacterial community; easily oxidized organic carbon, dissolved organic carbon, and slowly available K were significantly correlated with the fungal community. We conclude that long-term crop straw returning to the field accompanied with K fertilizer should be employed in rice-growing regions to achieve not only higher crop yield but also the increase in soil active organic carbon and available K content and the improvement of the biological quality of farmland.


2007 ◽  
Vol 6 (2) ◽  
pp. 200-207 ◽  
Author(s):  
TAN De-shui ◽  
JIN Ji-yun ◽  
HUANG Shao-wen ◽  
LI Shu-tian ◽  
HE Ping
Keyword(s):  

2007 ◽  
Vol 35 (2) ◽  
pp. 769-772 ◽  
Author(s):  
Attila Megyes ◽  
Tamás Rátonyi ◽  
Dénes Sulyok
Keyword(s):  

2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at Gödöllö. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.


Author(s):  
Minrui Shi ◽  
Jiamao Han ◽  
Guoan Wang ◽  
Jia Wang ◽  
Yaowen Han ◽  
...  
Keyword(s):  

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


Sign in / Sign up

Export Citation Format

Share Document