Development of bottleneck detection methods allowing for an effective fault repair prioritization in machining lines of the automobile industry

2016 ◽  
Vol 10 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Michael Wedel ◽  
Philipp Noessler ◽  
Joachim Metternich
2013 ◽  
Vol 416-417 ◽  
pp. 1350-1354 ◽  
Author(s):  
Xiang Xin Shao ◽  
Mu Jun Xie

The development of the automobile industry led to the development of auto parts, and airbags are one of the most important safety components of cars. In this paper, to meet the shortfall of traditional way of using a dial indicator to detect airbags deficiencies, a new automotive airbag shape detection methods based on image processing technology is put forward. First, extract the airbags image edge information using the method of boundary tracking, then detect whether airbags are qualified according to the similarity of image invariant moment. Experiments confirmed this method can improve the range and accuracy of the airbag detection.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 816 ◽  
Author(s):  
Emad Alzubi ◽  
Anas M. Atieh ◽  
Khaleel Abu Shgair ◽  
John Damiani ◽  
Sima Sunna ◽  
...  

This paper studies manufacturing processes in a wooden furniture manufacturing company. The company suffers from long manufacturing lead times and an unbalanced production line. To identify sources of waste and delay value stream mapping (VSM) and a discrete event simulation model is implemented. VSM is used to visualize and analyze the major processes of the company and provide quantifiable KPIs; the manufacturing lead-time and then Overall Equipment Effectiveness (OEE) settings. A discrete event simulation model is then built to analyze the company on a wider scale and provide the data required to identify bottlenecks. Building on the data gathered from the production lines and the simulation model, two-bottleneck detection methods are used, the utilization method, and the waiting time method. Then based on the comparison of the two methods a third bottleneck detection is utilized; the scenario-based method, to identify the primary and secondary bottlenecks. After the bottlenecks are identified, changes are then evaluated using the simulation model and radar charts were built based on the improved simulation model, which evaluates the effect of changes in the utilization and OEE results. This work managed to neutralize the effect of one of the main bottlenecks and minimize the effect of the other. The manufacturing utilization was increased by 15.8% for the main bottleneck resources followed by 2.4% for the second one. However, it is hard to convince the traditional administration of this small size manufacturing plant to adopt a completely revolutionizing, costly, and risky (at such level) lean manufacturing approach. This paper studies and provides a much lower in cost and verified scheme of enhancement.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


Sign in / Sign up

Export Citation Format

Share Document