Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source

Lipids ◽  
2015 ◽  
Vol 51 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Li Gang Yang ◽  
Zhi Xiu Song ◽  
Hong Yin ◽  
Yan Yan Wang ◽  
Guo Fang Shu ◽  
...  
2020 ◽  
Author(s):  
Jing Chen ◽  
Jiantao Li ◽  
Xianjun Liu ◽  
Hongze Cui ◽  
Liyan Wang ◽  
...  

Abstract Background The health benefits of n-3 polyunsaturated fatty acids (PUFA), such as cardioprotective, anti-inflammatory and hypo-triglyceridemic properties, have been well documented. However, current dietary modification can easily lead to excessive concentrations of n-6 PUFA and an imbalance in the n-6:n-3 PUFA ratio, resulting in the pathogenesis of obesity and related diseases. This study investigated the effects of various dietary n-6:n-3 PUFA ratios on the growth performance, blood lipid and cytokine profiles, tissue fatty acid composition, and gene expression involved in lipid metabolism in finishing pigs. Seventy-two crossbred [(Duroc × Landrace) × Yorkshire] finishing pigs (68.5 ± 1·8 kg) were fed one of four isoenergetic diets with n-6:n-3 PUFA ratios of 2:1, 3:1, 5:1 and 8:1. Results Pigs fed diets with n-6:n-3 PUFA ratios of 3:1 and 5:1 had a higher average daily gain (ADG) and average daily feed intake (ADFI) (P < 0.05) and a lower feed conversion ratio (FCR) (P < 0.05). The concentrations of triglyceride (TG) and total cholesterol (TC) of pigs fed diets with n-6:n-3 PUFA ratios of 1:1 to 5:1 decreased (P < 0·05), whereas the ratio of concentrations of high-density to low-density lipoprotein cholesterol (HDL-C:LDL-C) in pigs fed a diet with an n-6:n-3 PUFA ratio of 2:1 increased (P < 0·05) compared with those fed a diet with an n-6:n-3 PUFA ratio of 8:1. Pigs fed a diet with n-6:n-3 PUFA ratios of 2:1 and 3:1 had lower concentrations of leptin (LEP) and interleukin 6 (IL-6) (P < 0·05), and higher concentrations of adiponectin (APN) (P < 0·05) than those fed diets with n-6:n-3 PUFA ratios of 5:1 and 8:1. Diets with n-6:n-3 PUFA ratios of 2:1 and 3:1 markedly down-regulated the expression levels of peroxisome proliferator-activated receptor-γ (PPARγ) and lipoprotein lipase (LPL) in both the longissimus dorsi muscle (LM) and subcutaneous adipose tissue (SCAT), but up-regulated the expression level of adipocyte fatty acid binding protein (aP2) in the LM. The expression levels of aP2 and hormone- sensitive lipase were similar to those of PPARγ in the SCAT. Conclusions This study demonstrated that dietary n-6:n-3 PUFA ratios between 3:1 and 5:1 beneficially affected growth performance, optimize blood lipid and adipocytokine levels, enhanced absorption and deposition of n-3 PUFA and regulated lipid metabolism-related genes.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 804
Author(s):  
Felista W. Mwangi ◽  
David J. C. Blignaut ◽  
Edward Charmley ◽  
Christopher P. Gardiner ◽  
Bunmi S. Malau-Aduli ◽  
...  

Lipid metabolism, carcass characteristics and fatty acid (FA) composition of the Longissimus dorsi (loin eye) muscle were evaluated in tropical crossbred steers backgrounded on Desmanthus spp. (desmanthus) with or without feedlot finishing. It was hypothesized that steers backgrounded on isonitrogenous diets augmented with incremental proportions of desmanthus will produce carcasses with similar characteristics and FA composition. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were backgrounded for 140 days on Rhodes grass (Chloris gayana) hay augmented with 0, 15, 30 or 45 percent desmanthus on dry matter basis. Lucerne (Medicago sativa) hay was added to the 0, 15 and 30 percent desmanthus diets to ensure that they were isonitrogenous with the 45 percent desmanthus diet. After backgrounding, the two heaviest steers in each pen were slaughtered and the rest were finished in the feedlot for 95 days before slaughter. Muscle biopsy samples were taken at the beginning and end of the backgrounding phase. Carcasses were sampled at slaughter for intramuscular fat (IMF) content, fat melting point (FMP) and FA composition analyses. Increasing the proportion of desmanthus in the diet led to a linear increase in docosanoic acid (p = 0.04) and omega-6/omega-3 polyunsaturated FA ratio (n-6/n-3 PUFA; p = 0.01), while docosahexaenoic acid decreased linearly (p = 0.01). Feedlot finishing increased hot carcass weight, subcutaneous fat depth at the P8 site and dressing percentage (p ≤ 0.04). The n-6/n-3 PUFA ratio was within the recommended < 5 for human diets. IMF was within the consumer-preferred ≥3% level for palatability. The hypothesis that steers backgrounded on isonitrogenous diets augmented with incremental proportions of desmanthus will produce similar carcass characteristics and FA composition was accepted. These findings indicate that a combination of tropical beef cattle backgrounding on desmanthus augmented forage and short-term feedlot finishing produces healthy and highly palatable meat.


2018 ◽  
Author(s):  
Kerui Huang ◽  
Wenhao Chen ◽  
Fang Zhu ◽  
Hua Bai

AbstractBackgroundAging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, aged liver shows altered lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear. In fruit flies, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat body and oenocytes. Although the role of fat body in aging regulation has been well studied, little is known about how oenocytes age and what are their roles in aging regulation. To address these questions, we used cell-type-specific ribosome profiling (RiboTag) to study the impacts of aging and oxidative stress on oenocyte translatome in Drosophila.ResultsWe show that aging and oxidant paraquat significantly increased the levels of reactive oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among all age-regulated genes, mitochondrial, proteasome, peroxisome, fatty acid metabolism, and cytochrome P450 pathways were down-regulated, whereas DNA replication and glutathione metabolic pathways were up-regulated. Interestingly, most of the peroxisomal genes were down-regulated in aged oenocytes, including peroxisomal biogenesis factors and beta-oxidation genes. Further analysis of the oenocyte translatome showed that oenocytes highly expressed genes involving in liver-like processes (e.g., ketogenesis). Many age-related transcriptional changes in oenocytes are similar to aging liver, including up-regulation of Ras/MAPK signaling pathway and down-regulation of peroxisome and fatty acid metabolism.ConclusionsOur oenocyte-specific translatome analysis identified many genes and pathways that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular and functional similarities between the two tissues. Many of these genes are altered in both aged oenocytes and aged liver, suggesting a conserved molecular mechanism underlying oenocyte and liver aging. Thus, our translatome analysis will contribute significantly to the understanding of oenocyte biology, and its role in lipid metabolism, stress response and aging regulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Na Li ◽  
Nannan Li ◽  
Siqi Wen ◽  
Biao Li ◽  
Yaying Zhang ◽  
...  

Accumulating evidence demonstrates that cancer is an oxidative stress-related disease, and oxidative stress is closely linked with heat shock proteins (HSPs). Lipid oxidative stress is derived from lipid metabolism dysregulation that is closely associated with the development and progression of malignancies. This study sought to investigate regulatory roles of HSPs in fatty acid metabolism abnormality in ovarian cancer. Pathway network analysis of 5115 mitochondrial expressed proteins in ovarian cancer revealed various lipid metabolism pathway alterations, including fatty acid degradation, fatty acid metabolism, butanoate metabolism, and propanoate metabolism. HSP60 regulated the expressions of lipid metabolism proteins in these lipid metabolism pathways, including ADH5, ECHS1, EHHADH, HIBCH, SREBP1, ACC1, and ALDH2. Further, interfering HSP60 expression inhibited migration, proliferation, and cell cycle and induced apoptosis of ovarian cancer cells in vitro. In addition, mitochondrial phosphoproteomics and immunoprecipitation-western blot experiments identified and confirmed that phosphorylation occurred at residue Ser70 in protein HSP60, which might regulate protein folding of ALDH2 and ACADS in ovarian cancers. These findings clearly demonstrated that lipid metabolism abnormality occurred in oxidative stress-related ovarian cancer and that HSP60 and its phosphorylation might regulate this lipid metabolism abnormality in ovarian cancer. It opens a novel vision in the lipid metabolism reprogramming in human ovarian cancer.


2021 ◽  
pp. 777-785
Author(s):  
L LI ◽  
W TANG ◽  
M ZHAO ◽  
B GONG ◽  
M CAO ◽  
...  

The long-term feeding of a high-concentrate diet (the concentrate ratio is greater than 60 %) leads to mammary gland inflammatory response in ruminants and decreased quality in dairy cows and affects the robust development of the dairy industry. The main reason is closely related to elevated lipopolysaccharide (LPS) in the body. In this experiment, a bovine mammary epithelial cell line (MAC-T) was used as a model, and LPS at different concentrations (0 ng/ml, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1000 ng/ml, 10000 ng/ml) was added to the cells. The cell survival rate, oxidative stress indicators, total lipid droplet area, triglyceride content and key genes regulating lipid metabolism were detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), assay kit, microscope observation and RT-PCR methods to explore the regulatory mechanism of mammary health and milk fat synthesis. The results showed that compared with those of the control group, the survival rates of cells were significantly decreased after 9 h of stimulation with 1000 ng/ml and 10000 ng/ml LPS (P<0.01). The contents of superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) in cells were significantly decreased (P<0.05). Compared with that of the control group, the content of malondialdehyde (MDA) in cells was significantly increased (P<0.05) after stimulation with 10000 ng/ml LPS for 9 h. After 9 h of stimulation with 100 ng/ml, 1000 ng/ml and 10000 ng/ml LPS, the total lipid drop area and triglyceride (TG) content of MAC-T cells were significantly decreased (P<0.05). The expression levels of fatty acid synthesis-related genes Acetyl-CoA carboxylase (ACC) and Stearoyl-CoA desaturase 1 (SCD-1) were significantly decreased after 9 h of stimulation with 100 ng/ml, 1000 ng/ml and 10000 ng/ml LPS (P<0.05), while the expression levels of Fatty Acid synthetase (FAS) were significantly decreased after stimulation with 1000 ng/ml and 10000 ng/ml LPS (P<0.05). TG synthesis by the related gene Diacylglycerol acyltransferase-1 (DGAT1) was significantly lower than that of the control group after stimulation with 1000 ng/ml and 10000 ng/ml LPS for 9 h (P<0.05), and Diacylglycerol acyltransferase-2 (DGAT2) also showed a significant decrease after 10000 ng/ml LPS stimulation (P<0.05). In conclusion, adding different concentrations of LPS to MAC-T cells not only led to a decrease in cell activity, resulting in oxidative damage, but also affected fatty acid and TG synthesis, which may ultimately be closely related to the decrease in milk fat synthesis.


Sign in / Sign up

Export Citation Format

Share Document