Improving the CO2 fixation rate by increasing flow rate of the flue gas from microalgae in a raceway pond

2017 ◽  
Vol 35 (2) ◽  
pp. 498-502 ◽  
Author(s):  
Jun Cheng ◽  
Zongbo Yang ◽  
Junhu Zhou ◽  
Kefa Cen
2020 ◽  
Vol 216 ◽  
pp. 115536 ◽  
Author(s):  
Wangbiao Guo ◽  
Jun Cheng ◽  
Yanmei Song ◽  
Santosh Kumar ◽  
Kubar Ameer Ali ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1536
Author(s):  
Hao Yuan ◽  
Yi Wang ◽  
Yanaoming Xi ◽  
Zeyi Jiang ◽  
Xinru Zhang ◽  
...  

Microalgae biofilm-based culture has attracted much interest due to its high harvest efficiency and low energy requirements. Using light-emitting diodes (LEDs) as light source for microalgae culture has been considered as a promising choice to enhance the economic feasibility of microalgae-based commodities. In this work, the LED power conversion capability and CO2 fixation rate of microalgae biofilms (Chlorella ellipsoidea and Chlorella pyrenoidosa) cultured under different light spectra (white, blue, green and red) were studied. The results indicated that the power-to-biomass conversion capabilities of these two microalgae biofilms cultured under blue and white LEDs were much higher than those under green and red LEDs (C. ellipsoidea: 32%–33% higher, C. pyrenoidosa: 34%–46% higher), and their power-to-lipid conversion capabilities cultured under blue LEDs were 61%–66% higher than those under green LEDs. The CO2 fixation rates of these two biofilms cultured under blue LEDs were 13% and 31% higher, respectively, than those under green LEDs. The results of this study have important implications for selecting the optimal energy-efficient LEDs using in microalgae biofilm-based culture systems.


2004 ◽  
Vol 30 (6) ◽  
pp. 758-761
Author(s):  
Tomio MIMURA ◽  
Yasuyuki YAGI ◽  
Masaki IIJIMA ◽  
Ryuji YOSIYAMA ◽  
Takahito YONEKAWA

2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Md. Moheiminul I. Khan ◽  
Mehrin Chowdhury ◽  
A. S. M. Arifur Rahman Chowdhury ◽  
Jad Aboud ◽  
Norman Love

Abstract This paper presents the results of thermal efficiency of two coal based oxy-combustion thermodynamic cycles that are modeled using aspen plus. The objective of the present study is to perform a parametric analysis, investigating the effect of different recirculation ratios at different pressures on the efficiencies of the cycle named for the company, ENEL, and the thermo energy power system, TIPS, cycles using aspen plus® software. Variables include the flue gas recycle flow rate, the combustor temperature, and the operational pressure. Five recirculation ratios were investigated, ranging from 20% to 75%. It was determined that as the amount of recycled gas into the combustor increased, the thermal efficiency increased for both the TIPS and ENEL cycles. The highest thermal efficiency for TIPS is 37% and for ENEL is 38%, both occurring at a 75% recirculation ratio. After investigation, since combustion temperature and specific heat capacity decreases at higher recirculation ratios, the mass flow rate was the dominant factor that contributes to the increase in thermal efficiency of the cycle. At each recirculation ratio, the effect of pressure is also determined. For ENEL, the increase in cycle efficiency is 10% over the pressure range of 1–12 bar at a recirculation ratio of 20%, while the increase in cycle efficiency is only 1.5% at a higher recirculation ratio of 75%. For TIPS, the cycle efficiency increases by 4% at the recirculation ratio of 20% and increases by 3% at the recirculation ratio of 75% for a pressure range of 50–80 bar.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 418
Author(s):  
Huiqian Guo ◽  
Jing Wang ◽  
Jiangbo Wu ◽  
Xiaoze Du

Limestone-gypsum wet flue gas desulfurization (WFGD) often produces a certain amount of wastewater with complex water quality and heavy metal pollution which should be treated properly before release. Spaying the desulfurization wastewater into flue duct and using exhausted flue gas heat for evaporation is a promising and economical technology for achieving zero wastewater discharge in thermal power plant. To enable a more in-depth understanding on evaporation of FGD wastewater spray, a visual wind tunnel test rig based on the atomized droplet laser measuring system was built to reveal the impact factors on droplet thermal-fluid behavior. The dominant impact factors such as compressed air pressure and flow rate in air-blast spray nozzle, hot air temperature and velocity in the evaporation tunnel were analyzed to discuss the droplet size distribution and evaporation performance through alternating operate condition. A discrete mathematical model that combines both Eulerian and Lagrangian framework was established to validate the experiment result. It is concluded that introducing high pressure compressed air into the nozzle can contribute to the dispersion of droplets and enhance the evaporation rate. Proper flow rate in spray nozzle is required to avoid incomplete droplets evaporation. Air temperature and velocity in the evaporation tunnel apply positive impact on droplet size distribution and evaporation performance. Numerical simulation results of both dominant factors impact on evaporation behavior and total evaporation rate showed consistency with the experimental outcome.


Sign in / Sign up

Export Citation Format

Share Document