scholarly journals Experimental Methods to Enable High-Throughput Characterization of New Structural Materials

JOM ◽  
2021 ◽  
Author(s):  
Nils Ellendt ◽  
Brigitte Clausen ◽  
Nicole Mensching ◽  
Daniel Meyer ◽  
Christina Plump ◽  
...  

AbstractData-driven methods for developing new structural materials require large databases to identify new materials from known process routes, the resulting microstructures, and their properties. Due to the high number of parameters for such process chains, this can only be achieved with methods that allow high sample throughputs. This paper presents the experimental approach of the "Farbige Zustände" method through a case study. Our approach features a high-temperature drop-on-demand droplet generator to produce spherical micro-samples, which are then heat-treated and subjected to various short-time characterizations, which yield a large number of physical, mechanical, technological, and electrochemical descriptors. In this work, we evaluate achievable throughput rates of this method resulting in material property descriptions per time unit. More than 6000 individual samples could be generated from different steels, heat-treated and characterized within 1 week. More than 90,000 descriptors were determined to specify the material profiles of the different alloys during this time. These descriptors are used to determine the material properties at macro-scale.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Michael Schreiter ◽  
Daniel Nebel ◽  
Enrico Körner ◽  
Arham Saleem ◽  
Manuel Schlegel

The potential of a continuous non-crimp fabric (NCF) process with implemented offset technologies is demonstrated by a case study of a seat pass-through. Topology optimization with the relevant load cases and the construction of a load-adapted composite design with a weight saving of up to 18 percent is presented. Inverse draping identifies a two-dimensional development of the construction and prepares it for production based on the restrictions of textile technology. The downstream process capability of textiles produced in this way was investigated by impregnating heavy tows with polypropylene on laboratory scale and subsequent material characterization of the resulting laminates. The impregnation and consolidation of the seat pass-through is performed with load path adapted semi-finished products using novel variothermal, fluid-based pressing. This allows better control over the dynamic impregnation and unwanted fiber washing due to the large gradient of the areal weight. The final processing in injection molding tool of the reference component shows the applicability of the technology also in existing process chains and illustrates the potential of the consistent consideration of a load-adapted composite design in the development process.


Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


Author(s):  
R. Padmanabhan ◽  
W. E. Wood

Intermediate high temperature tempering prior to subsequent reaustenitization has been shown to double the plane strain fracture toughness as compared to conventionally heat treated UHSLA steels, at similar yield strength levels. The precipitation (during tempering) of metal carbides and their subsequent partial redissolution and refinement (during reaustenitization), in addition to the reduction in the prior austenite grain size during the cycling operation have all been suggested to contribute to the observed improvement in the mechanical properties. In this investigation, 300M steel was initially austenitized at 1143°K and then subjected to intermediate tempering at 923°K for 1 hr. before reaustenitizing at 1123°K for a short time and final tempering at 583°K. The changes in the microstructure responsible for the improvement in the properties have been studied and compared with conventionally heat treated steel. Fig. 1 shows interlath films of retained austenite produced during conventionally heat treatment.


Author(s):  
Shozo Ikeda ◽  
Hirotoshi Hayakawa ◽  
Daniel R. Dietderich

Pb addition makes easier to form the high Tc phase in the BSCCO system. However, Pb easily vaporized at high temperature. A controlled Pb potential method has been applied to grow the high Tc phase in films. Initially, films are deposited on cleaved MgO substrates using an rf magnetron sputtering system. These amorphous as-deposited films are heat treated in a sealed gold capsule along with a large pellet of Pb-added BSCCO. Details of the process and characterization of the films have been reported elsewhere (1). Films trated for 0.5h at 850° C contain mainly the low Tc phase with a small amount of the high Tc phase. Hawever, films treated for 3h at 850°C consist mainly of the high Tc phase. This film is superconductive with a Tc(zero) of 106K. The Pb/Bi ratio of the films, analysed by SEM- EDS, are 0.12 and 0.18 for heat tratment times of 0.5 and 3h, respectively. The present study investigates the modulated structures of these films using HREM.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2011 ◽  
Author(s):  
Giorgio Rocco Cavanna ◽  
Ernesto Caselgrandi ◽  
Elisa Corti ◽  
Alessandro Amato del Monte ◽  
Massimo Fervari ◽  
...  

2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document