scholarly journals Cardiac Regeneration After Myocardial Infarction: an Approachable Goal

2020 ◽  
Vol 22 (10) ◽  
Author(s):  
Mauro Giacca

Abstract Purpose of Review Until recently, cardiac regeneration after myocardial infarction has remained a holy grail in cardiology. Failure of clinical trials using adult stem cells and scepticism about the actual existence of such cells has reinforced the notion that the heart is an irreversibly post-mitotic organ. Recent evidence has drastically challenged this conclusion. Recent Findings Cardiac regeneration can successfully be obtained by at least two strategies. First, new cardiomyocytes can be generated from embryonic stem cells or induced pluripotent stem cells and administered to the heart either as cell suspensions or upon ex vivo generation of contractile myocardial tissue. Alternatively, the endogenous capacity of cardiomyocytes to proliferate can be stimulated by the delivery of individual genes or, more successfully, of selected microRNAs. Summary Recent experimental success in large animals by both strategies now fuels the notion that cardiac regeneration is indeed possible. Several technical hurdles, however, still need to be addressed and solved before broad and successful clinical application is achieved.

2020 ◽  
Vol 16 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Sang Hun Kim ◽  
Jeoung Hyun Nam ◽  
Man Ryul Lee ◽  
Yongsung Hwang ◽  
Eun Soo Park

Background: Human-induced pluripotent stem cells (hiPSCs) complement the disadvantages of conventional embryonic stem cells and adult stem cells, and have the advantages of simplicity of production and pluripotency. Some recent studies have applied hiPSC in cell therapy.Methods: In this study, we examined the effect of cells similar to cord blood endothelial colony-forming cells (CB-ECFCs), differentiated from induced pluripotent stem cells, on angiogenesis and granulation tissue formation in the proliferative phase of wound healing. For cell transfer, we used methacrylated gelatin (GelMA)-co-poly(styrene sulfonate) (PSS) cryogel, which has better bioactivity than conventional hydrogels and excellent mechanical properties and swelling capacity. Two full-thickness skin defects, 0.8 cm in diameter, were made in each of our 12 experimental mice. Wound splinting models were used to prevent contraction of the wounds. In each of the experimental animals, 5×10<sup>5</sup> cells were applied with GelMA-co-PSS cryogel in one of the two wounds, while only a culture medium with cryogel was applied to the other wound.Results: Wound reduction rates in the experimental side showed increases compared to the control side in 3 days, but there was no statistical significance. The histological score was significantly increased (P<0.05), and histologic examination showed that angiogenesis and granulation formation were also increased in the experiment side.Conclusion: In conclusion, CB-ECFCs-like cells differentiated from hiPSCs were effective in promoting formation of angiogenesis and granulation tissue in a mouse wound healing model.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shanshan Hu ◽  
Ge Shan

Noncoding RNAs are critical regulatory factors in essentially all forms of life. Stem cells occupy a special position in cell biology and Biomedicine, and emerging results show that multiple ncRNAs play essential roles in stem cells. We discuss some of the known ncRNAs in stem cells such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adult stem cells, and cancer stem cells with a focus on long ncRNAs. Roles and functional mechanisms of these lncRNAs are summarized, and insights into current and future studies are presented.


Author(s):  
Angela Di Baldassarre ◽  
Elisa Cimetta ◽  
Sveva Bollini ◽  
Giulia Gaggi ◽  
Barbara Ghinassi

Human induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them human attractive disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as source cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs. We also cover the phenotypic characteristics of the hiPSCs derived CMs, their ability to rescue injured CMs through paracrine effects, the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their potential use in biomedical applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weiwei Sun ◽  
Bin Zhang ◽  
Qingli Bie ◽  
Na Ma ◽  
Na Liu ◽  
...  

The biological role of RNA methylation in stem cells has attracted increasing attention. Recent studies have demonstrated that RNA methylation plays a crucial role in self-renewal, differentiation, and tumorigenicity of stem cells. In this review, we focus on the biological role of RNA methylation modifications including N6-methyladenosine, 5-methylcytosine, and uridylation in embryonic stem cells, adult stem cells, induced pluripotent stem cells, and cancer stem cells, so as to provide new insights into the potential innovative treatments of cancer or other complex diseases.


2021 ◽  
Vol 1 (1) ◽  
pp. 11-18
Author(s):  
Yola Eka Erwinda

The potency of stem cells in treatment or therapy is widely known due the properties of stem cells to differentiate into specialized cell type in the body. Application stem cells in medicine and therapy is mostly used for alternative treatment of diseases that could not be cured using chemical or other biological drugs, such as non-communicable diseases. In general, stem cells are classified in three types, namely Adult Stem Cells (ASC), Human Embryonic Stem Cells (hESC), and Induced Pluripotent Stem Cells. Each type of the cells has advantages and drawbacks for application in medicine and therapy. This review investigates whether iPS is the best approach for non-communicable disease treatment among other stem cell types.


Author(s):  
Ishita Paliwal

Cancer develops when healthy cells experience a mutation, allowing for rapid and abnormal growth. Mutagens, such as radiation and carcinogens, allow fast-growth variant cells to be positively selected and thus propagate the development of cancer. Radiation and chemotherapy are prevailing, but non-ideal forms of cancer treatment as they can harm healthy cells in the body. Stem cells can be used to replace the healthy cells that were lost, but there are ethical concerns regarding the acquisition of embryonic stem cells (ESCs), or technicalities in obtainment and usage of adult stem cells (ASCs). Thus, the discovery of induced pluripotent stem cells (iPSCs) allows for the use of ASCs that are given the pluripotent characteristics of ESCs. In 2018, Kooreman and his colleagues from Stanford University coaxed iPSCs to display the epitopes of breast cancer. After exposing mice with breast cancer to iPSCs, 70% of the mice had a decreased tumour size compared to control mice. Thus, iPSCs may work as a vaccine for cancer and potentially treat and cure the disease. Further research is required to study the feasibility of the use of iPSCs for human breast cancer. 


2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Sign in / Sign up

Export Citation Format

Share Document