Novel treatment strategies in chronic lymphocytic leukemia

2001 ◽  
Vol 3 (3) ◽  
pp. 217-222 ◽  
Author(s):  
Mark A. Weiss
2018 ◽  
Vol 25 (1) ◽  
pp. 91
Author(s):  
C. Owen ◽  
C. Toze ◽  
A. Christofides

The 2017 annual meeting of the American Society of Hematology took place 9–12 December in Atlanta, Georgia. At the meeting, the oral presentations included results from key studies on the first-line treatment of chronic lymphocytic leukemia. A series of phase ii studies focusing on the efficacy and safety of novel treatment strategies were especially notable. One concerned the health-related quality of life results from the gibb study, which had examined the combination of obinutuzumab and bendamustine. A second evaluated the venetoclax–ibrutinib regimen in patients with high-risk disease. The third assessed the combination of ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab in patients with mutated immunoglobulin heavy-chain variable region genes. The fourth examined the combination of ibrutinib, fludarabine, cyclophosphamide, and rituximab in younger patients. And the final study evaluated obinutuzumab–ibrutinib followed by a minimal residual disease strategy in fit patients. Our meeting report describes the foregoing studies and presents interviews with investigators and commentaries by Canadian hematologists about the potential effects on Canadian practice.


2020 ◽  
pp. 972-987
Author(s):  
Ramez N. Eskander ◽  
Julia Elvin ◽  
Laurie Gay ◽  
Jeffrey S. Ross ◽  
Vincent A. Miller ◽  
...  

PURPOSE High-grade neuroendocrine cervical cancer (HGNECC) is an uncommon malignancy with limited therapeutic options; treatment is patterned after the histologically similar small-cell lung cancer (SCLC). To better understand HGNECC biology, we report its genomic landscape. PATIENTS AND METHODS Ninety-seven patients with HGNECC underwent comprehensive genomic profiling (182-315 genes). These results were subsequently compared with a cohort of 1,800 SCLCs. RESULTS The median age of patients with HGNECC was 40.5 years; 83 patients (85.6%) harbored high-risk human papillomavirus (HPV). Overall, 294 genomic alterations (GAs) were identified (median, 2 GAs/sample; average, 3.0 GAs/sample, range, 0-25 GAs/sample) in 109 distinct genes. The most frequently altered genes were PIK3CA (19.6% of cohort), MYC (15.5%), TP53 (15.5%), and PTEN (14.4%). RB1 GAs occurred in 4% versus 32% of HPV-positive versus HPV-negative tumors ( P < .0001). GAs in HGNECC involved the following pathways: PI3K/AKT/mTOR (41.2%); RAS/MEK (11.3%); homologous recombination (9.3%); and ERBB (7.2%). Two tumors (2.1%) had high tumor mutational burden (TMB; both with MSH2 alterations); 16 (16.5%) had intermediate TMB. Seventy-one patients (73%) had ≥ 1 alteration that was theoretically druggable. Comparing HGNECC with SCLC, significant differences in TMB, microsatellite instability, HPV-positive status, and in PIK3CA, MYC, PTEN, TP53, ARID1A, and RB1 alteration rates were found. CONCLUSION This large cohort of patients with HGNECC demonstrated a genomic landscape distinct from SCLC, calling into question the biologic and therapeutic relevance of the histologic similarities between the entities. Furthermore, 73% of HGNECC tumors had potentially actionable alterations, suggesting novel treatment strategies for this aggressive malignancy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ebru Aydin ◽  
Sebastian Faehling ◽  
Mariam Saleh ◽  
Laura Llaó Cid ◽  
Martina Seiffert ◽  
...  

Phosphoinositide 3-kinases (PI3Ks) and their downstream proteins constitute a signaling pathway that is involved in both normal cell growth and malignant transformation of cells. Under physiological conditions, PI3K signaling regulates various cellular functions such as apoptosis, survival, proliferation, and growth, depending on the extracellular signals. A deterioration of these extracellular signals caused by mutational damage in oncogenes or growth factor receptors may result in hyperactivation of this signaling cascade, which is recognized as a hallmark of cancer. Although higher activation of PI3K pathway is common in many types of cancer, it has been therapeutically targeted for the first time in chronic lymphocytic leukemia (CLL), demonstrating its significance in B-cell receptor (BCR) signaling and malignant B-cell expansion. The biological activity of the PI3K pathway is not only limited to cancer cells but is also crucial for many components of the tumor microenvironment, as PI3K signaling regulates cytokine responses, and ensures the development and function of immune cells. Therefore, the success or failure of the PI3K inhibition is strongly related to microenvironmental stimuli. In this review, we outline the impacts of PI3K inhibition on the tumor microenvironment with a specific focus on CLL. Acknowledging the effects of PI3K inhibitor-based therapies on the tumor microenvironment in CLL can serve as a rationale for improved drug development, explain treatment-associated adverse events, and suggest novel combinatory treatment strategies in CLL.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5435
Author(s):  
Maiko Matsushita

Introduction of tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myelogenous leukemia (CML), and treatment-free remission (TFR) is now a treatment goal. However, about half of the patients experience molecular relapse after cessation of TKIs, suggesting that leukemic stem cells (LSCs) are resistant to TKIs. Eradication of the remaining LSCs using immunotherapies including interferon-alpha, vaccinations, CAR-T cells, and other drugs would be a key strategy to achieve TFR.


Sign in / Sign up

Export Citation Format

Share Document