The distribution of frictional heat generated between the contacting surfaces of the friction clutch system

Author(s):  
Oday I. Abdullah ◽  
Josef Schlattmann ◽  
Mahir H. Majeed ◽  
Laith A. Sabri
2018 ◽  
Vol 72 (2) ◽  
pp. 189-194 ◽  
Author(s):  
Oday Ibraheem Abdullah ◽  
Josef Schlattmann ◽  
Hussein Jobair ◽  
Nasser Eddine Beliardouh ◽  
Hakan Kaleli

Purpose The purpose of this paper is to present an approach to compute accurately the distributions of the frictional heat generated, contact pressure and thermal stresses at any instant during the sliding period (heating phase) of the single-disc friction clutch system works in the dry condition and the complex interaction among them. Design/methodology/approach Numerical work was achieved using the developed elastic and thermal finite element models (axisymmetric models) to simulate the engagement of the single-disc friction clutch system. Findings The change of distribution of contact pressure during the sliding period (heating phase) affects significantly the magnitude and distribution of the produced thermal stress. The high local heat generated appeared in the contacting surfaces because of the non-uniformity of the distribution of contact pressure during the heating phase (sliding time) and this will dramatically increase the thermal stresses. Originality/value Sequentially coupled thermal-mechanical approach was developed to investigate the thermal stresses problem in automotive clutches under dry conditions. This approach is considered a promising approach to investigate the effect of material, sliding time, torque function, etc., on the thermal stresses of different types of friction clutch.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Oday I. Abdullah ◽  
Josef Schlattmann

The numerical simulation of the friction clutch system (pressure plate, clutch disc, and flywheel) during the full engagement period (assuming no slipping between contact surfaces) is carried out using finite element method. Two types of load condition considered affect on the clutch elements during the full engagement period are the contact pressure of diaphragm spring and the centrifugal force. The study of the pressure distribution between the contact surfaces and the factors affecting it is one of the fundamentals in the process of designing the friction clutch to obtain accurate estimation of the temperature distribution during the slipping period and the contact stresses during the full engagement period. The investigation covers the effect of the contact stiffness factor FKN on the pressure distribution between contact surfaces, stresses, and penetration. The penalty and augmented Lagrange algorithms have been used to obtain the pressure distribution between contact surfaces. ANSYS13 software has been used to perform the numerical calculation in this paper.


Tribologia ◽  
2018 ◽  
Vol 271 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Majid Habeb FAIDH-ALLAH

The sliding period is considered a critical period in the lifetime of friction clutches, because most failures occur during this period. High temperatures due to sliding velocity will appear on the contacting surfaces of the friction clutch system (e.g., in single -disc clutch are pressure plate, clutch discs and flywheel). The finite element technique has been developed to investigate the effect of the type of friction material (material properties) on the transient thermoelastic behaviour of a single-disc dry clutch. Two types of friction materials are used in this work: organic and sintered friction materials. Axisymmetric models are developed to simulate a friction clutch system (single disc with two effective sides). The results represent the comparisons between organic and sintered friction discs, behaviours during slipping periods in clutches.


2019 ◽  
Vol 4 (1) ◽  
pp. 335-340
Author(s):  
Roland Biczó ◽  
Gábor Kalácska

Modelling the complex coupled thermomechanical and tribological contact of a dry friction clutch system between cast iron flywheel and scatter-wound hybrid composite clutch facing requires a thought through investigation of the friction material properties and behaviour. Challenges of the creation of a mechanical stiffness matrix for such a complex material are described in this paper along with simplification ideas and solutions.


Author(s):  
Sooyoung Kim ◽  
Seibum B Choi ◽  
Saebom Kim

This study proposes a new design for a friction clutch actuator using the self-energizing principle for vehicle applications such that the power consumption for clutch control is significantly reduced. The self-energizing effect can be created by simply adding wedge structures to a conventional clutch system, and it assists in significantly reducing the actuation energy of the clutch with little additional cost. In this paper, a mathematical model of the clutch actuation system is derived on the basis of static force analyses with particular emphasis on the torque amplification factor due to the self-energizing effect. The slope angles of the wedges in the proposed clutch actuator are determined in order that the clutch system ensures appropriate torque amplification while considering various factors such as the variations in the friction coefficient and the return spring force. In addition, model-based analyses of the new clutch actuator system are performed in order to predict the dynamic effects of the self-energizing mechanism on the system, particularly for the clutch engagement process. The feasibility of the proposed clutch design and its high energy efficiency are verified experimentally using three prototypes with different slope angles.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Oday I. Abdullah ◽  
Mumtaz Jamil Akhtar ◽  
Josef Schlattmann

The high thermal stresses generated in the contacting surfaces of a multidisk clutch system (pressure plate, clutch disks, plate separators and piston), due to the frictional heating generation during the slipping, is considered to be one of the main reasons lead to premature failure in the contacting surfaces of clutches. A finite element technique has been used to study the transient thermo-elastic phenomena of multidisk dry clutch. The effect of the sliding speed on the contact pressure distribution, the temperature field and the frictional heat generated along the frictional surfaces are investigated. Analysis has been completed using axisymmetric model to simulate the multidisk clutch system. Ansys software has been used to perform the numerical calculation in this paper.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 115
Author(s):  
Laith A. Sabri ◽  
Nadica Stojanović ◽  
Adolfo Senatore ◽  
Muhsin Jaber Jweeg ◽  
Azher M. Abed ◽  
...  

We present an investigation through numerical analysis (FEM) of the solution of the contact problem in friction clutch systems during engagement manoeuver. The case of high contact pressure between the sliding elements of a clutch system (flywheel, friction clutch and pressure plate) has been also considered. A finite element model of a dry friction clutch system (single disc) to estimate the distributions of the contact pressure between the contact elements of the clutch system under different working conditions has been developed and the main findings are discussed. Furthermore, the effect of modules of elasticity (contact stiffness) on the distribution of contact pressure of the mating surfaces was investigated. Also, the results encompass the deformations of the contacting surfaces for different cases. This work could provide a fundamental intermediate step to obtain a partial solution to the thermos-elastic problem in order to compute the thermal-driven deformations and stresses in the automotive clutches and brakes under different working conditions.


Sign in / Sign up

Export Citation Format

Share Document