Dry Anaerobic Co-digestion of Cow Dung with Pig Manure for Methane Production

2014 ◽  
Vol 173 (6) ◽  
pp. 1537-1552 ◽  
Author(s):  
Jianzheng Li ◽  
Ajay Kumar Jha ◽  
Tri Ratna Bajracharya
2020 ◽  
Vol 14 (1) ◽  
pp. 91-97
Author(s):  
Yameng Li ◽  
Yanyan Jing ◽  
Zhiping Zhang ◽  
Danping Jiang ◽  
Quanguo Zhang ◽  
...  

2021 ◽  
Vol 41 (4) ◽  
pp. 438-448
Author(s):  
Juciara O. Lopes ◽  
André P. Rosa ◽  
Izabelle de P. Sousa ◽  
Nathalia S. Oliveira ◽  
Alisson C. Borges

2012 ◽  
Vol 15 (23) ◽  
pp. 1111-1118 ◽  
Author(s):  
Ajay Kumar Jha ◽  
Jianzheng Li ◽  
Qiaoying Ban ◽  
Liguo Zhang ◽  
Bowei Zhao

Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


2014 ◽  
Vol 69 (12) ◽  
pp. 2381-2388 ◽  
Author(s):  
J. Jiménez ◽  
M. E. Cisneros-Ortiz ◽  
Y. Guardia-Puebla ◽  
J. M. Morgan-Sagastume ◽  
A. Noyola

The anaerobic co-digestion of three wastes (manure, rice straw and clay residue, an inorganic additive) at different concentration levels and their interactive effects on methanogenic activity were investigated in this work at thermophilic conditions in order to enhance hydrolytic activity and methane production. A central composite design and the response surface methodology were applied for the optimization of specific methanogenic activity (SMA) by assessing their interaction effects with a reduced number of experiments. The results showed a significant interaction among the wastes on the SMA and confirmed that co-digestion enhances methane production. Rice straw apparently did not supply a significant amount of substrate to make a difference in SMA or methane yield. On the other hand, clay residue had a positive effect as an inorganic additive for stimulating the anaerobic process, based on its mineral content and its adsorbent properties for ammonia. Finally, the optimal conditions for achieving a thermophilic SMA value close to 1.4 g CH4-COD/g VSS · d−1 were 20.3 gVSS/L of manure, 9.8 gVSS/L of rice straw and 3.3 gTSS/L of clay.


2019 ◽  
Vol 9 (9) ◽  
pp. 1791 ◽  
Author(s):  
Xiomara Gómez-Quiroga ◽  
Kaoutar Aboudi ◽  
Carlos José Álvarez-Gallego ◽  
Luis Isidoro Romero-García

In this paper, the viability of thermophilic anaerobic co-digestion of exhausted sugar beet pulp (ESBP) and pig manure (PM) was evaluated. The effect of the proportion of ESBP on biogas production was investigated by using a series of lab-scale batch assays, in duplicates. The following five ESBP:PM mixture ratios were studied: 0:100, 10:90, 25:75, 50:50, and 100:0. The highest cumulative methane production (212.4 mL CH4/g VSadded) was reached for the mixture 25:75. The experimental results showed that the increase in the proportion of ESBP in the mixture led to the distortion of the process, due to acidification by the volatile fatty acids generated. Acetic acid was the predominant acid in all the cases, representing more than 78% of the total acidity. Moreover, the results obtained by operating at thermophilic temperatures have been compared with those obtained in a previous study conducted at mesophilic temperatures. The results have shown that in the individual digestion of ESBP, the activity of acetoclastic methanogens was affected in both temperatures, but especially in thermophilic conditions. Thus, the methane produced in the individual thermophilic digestion of ESBP came almost entirely from the activity of hydrogen-utilizing methanogenic archaea.


Sign in / Sign up

Export Citation Format

Share Document