scholarly journals Can We Cluster ICU Treatment Strategies for Traumatic Brain Injury by Hospital Treatment Preferences?

Author(s):  
Iris E. Ceyisakar ◽  
Jilske A. Huijben ◽  
Andrew I. R. Maas ◽  
Hester F. Lingsma ◽  
Nikki van Leeuwen ◽  
...  

Abstract Background In traumatic brain injury (TBI), large between-center differences in treatment and outcome for patients managed in the intensive care unit (ICU) have been shown. The aim of this study is to explore if European neurotrauma centers can be clustered, based on their treatment preference in different domains of TBI care in the ICU. Methods Provider profiles of centers participating in the Collaborative European Neurotrauma Effectiveness Research in TBI study were used to assess correlations within and between the predefined domains: intracranial pressure monitoring, coagulation and transfusion, surgery, prophylactic antibiotics, and more general ICU treatment policies. Hierarchical clustering using Ward’s minimum variance method was applied to group data with the highest similarity. Heat maps were used to visualize whether hospitals could be grouped to uncover types of hospitals adhering to certain treatment strategies. Results Provider profiles were available from 66 centers in 20 different countries in Europe and Israel. Correlations within most of the predefined domains varied from low to high correlations (mean correlation coefficients 0.2–0.7). Correlations between domains were lower, with mean correlation coefficients of 0.2. Cluster analysis showed that policies could be grouped, but hospitals could not be grouped based on their preference. Conclusions Although correlations between treatment policies within domains were found, the failure to cluster hospitals indicates that a specific treatment choice within a domain is not a proxy for other treatment choices within or outside the domain. These results imply that studying the effects of specific TBI interventions on outcome can be based on between-center variation without being substantially confounded by other treatments. Trial registration We do not report the results of a health care intervention.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cynthia R. Muller ◽  
Vasiliki Courelli ◽  
Alfredo Lucas ◽  
Alexander T. Williams ◽  
Joyce B. Li ◽  
...  

AbstractTraumatic brain injury (TBI) is often accompanied by hemorrhage, and treatment of hemorrhagic shock (HS) after TBI is particularly challenging because the two therapeutic treatment strategies for TBI and HS often conflict. Ischemia/reperfusion injury from HS resuscitation can be exaggerated by TBI-induced loss of autoregulation. In HS resuscitation, the goal is to restore lost blood volume, while in the treatment of TBI the priority is focused on maintenance of adequate cerebral perfusion pressure and avoidance of secondary bleeding. In this study, we investigate the responses to resuscitation from severe HS after TBI in rats, using fresh blood, polymerized human hemoglobin (PolyhHb), and lactated Ringer’s (LR). Rats were subjected to TBI by pneumatic controlled cortical impact. Shortly after TBI, HS was induced by blood withdrawal to reduce mean arterial pressure (MAP) to 35–40 mmHg for 90 min before resuscitation. Resuscitation fluids were delivered to restore MAP to ~ 65 mmHg and animals were monitored for 120 min. Increased systolic blood pressure variability (SBPV) confirmed TBI-induced loss of autoregulation. MAP after resuscitation was significantly higher in the blood and PolyhHb groups compared to the LR group. Furthermore, blood and PolyhHb restored diastolic pressure, while this remained depressed for the LR group, indicating a loss of vascular tone. Lactate increased in all groups during HS, and only returned to baseline level in the blood reperfused group. The PolyhHb group possessed lower SBPV compared to LR and blood groups. Finally, sympathetic nervous system (SNS) modulation was higher for the LR group and lower for the PolyhHb group compared to the blood group after reperfusion. In conclusion, our results suggest that PolyhHb could be an alternative to blood for resuscitation from HS after TBI when blood is not available, assuming additional testing demonstrate similar favorable results. PolyhHb restored hemodynamics and oxygen delivery, without the logistical constraints of refrigerated blood.


2010 ◽  
Vol 31 (1) ◽  
pp. 17-35 ◽  
Author(s):  
Martin Lauritzen ◽  
Jens Peter Dreier ◽  
Martin Fabricius ◽  
Jed A Hartings ◽  
Rudolf Graf ◽  
...  

Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic brain mechanisms have the potential to worsen the outcome of cerebrovascular episodes or brain trauma. The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD as a pathophysiological mechanism for this group of acute neurological disorders. The findings have implications for monitoring and treatment of patients with acute brain disorders in the intensive care unit. Drawing on the large body of experimental findings from animal studies of CSD obtained during decades we suggest treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory Simchick ◽  
Kelly M. Scheulin ◽  
Wenwu Sun ◽  
Sydney E. Sneed ◽  
Madison M. Fagan ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that has increased predictive potential in the development of novel therapies. rs- and tb-fMRI were performed one day post-TBI in piglets. Activation maps were generated using group independent component analysis (ICA) and sparse dictionary learning (sDL). Activation maps were compared to pig reference functional connectivity atlases and evaluated using Pearson spatial correlation coefficients and mean ratios. Nonparametric permutation analyses were used to determine significantly different activation areas between the TBI and healthy control groups. Significantly lower Pearson values and mean ratios were observed in the visual, executive control, and sensorimotor networks for TBI piglets compared to controls. Significant differences were also observed within several specific individual anatomical structures within each network. In conclusion, both rs- and tb-fMRI demonstrate the ability to detect functional connectivity disruptions in a translational TBI piglet model, and these disruptions can be traced to specific affected anatomical structures.


Author(s):  
Vani Rao

Traumatic brain injury (TBI) is a significant cause of disability in the United States, with an incidence of about 1.5 million cases per year (National Institutes of Health Consensus Development Panel, 1999). It is associated with both neurologic and psychiatric consequences. Although the neurologic problems usually stabilize with time, the psychiatric disorders often continue to remit and relapse. Factors associated with the development of psychiatric disorders include older age, arteriosclerosis, and chronic alcoholism, all of which interfere with the reparative process within the central nervous system. Other contributors to psychiatric disability include a pre-TBI history of psychiatric illness, illicit drug abuse, and lack of social support. Because post-TBI psychiatric disturbances interfere with rehabilitation and cause emotional and financial burden for patients and caregivers, early diagnosis and treatment are important. Post-TBI psychiatric disturbances are best classified according to their clinical presentation. These disturbances are discussed below and their pharmacologic and nonpharmacologic treatment strategies are recommended. The mood disturbances most commonly associated with TBI are major depression, mania, anxiety, and apathy. Major depression is seen in about 25% of people with TBI. Symptoms of major depression include persistent sadness; guilt; feelings of worthlessness; hopelessness; suicidal thoughts; anhedonia; and changes in patterns of sleep, appetite, and energy. Sometimes these symptoms may be associated with psychotic features such as delusions and hallucinations. It is important to remember that changes in sleep, appetite, or energy are not specific to the syndrome of major depression and may be due to the brain injury itself, or to the noise, stimulation, or deconditioning associated with hospitalization. If due to the latter conditions, gradual improvement occurs with time in most patients. Sadness in excess of the severity of injury and poor participation in rehabilitation are strong indicators of the presence of major depression. The presence of poor social functioning pre-TBI and left dorsolateral frontal and/or left basal ganglia lesion have been associated with an increased probability of developing major depression following brain injury ( Jorge et al., 1993a; Jorge et al., 2004). Major depression should be differentiated from demoralization, primary apathy syndrome, and pathologic crying.


2020 ◽  
Vol 10 (3) ◽  
pp. 208-216
Author(s):  
David P. Lerner ◽  
Starane A. Shepherd ◽  
Ayush Batra

Hyponatremia is a well-known disorder commonly faced by clinicians managing neurologically ill patients. Neurological disorders are often associated with hyponatremia during their acute presentation and can be associated with specific neurologic etiologies and symptoms. Patients may present with hyponatremia with traumatic brain injury, develop hyponatremia subacutely following aneurysmal subarachnoid hemorrhage, or may manifest with seizures due to hyponatremia itself. Clinicians caring for the neurologically ill patient should be well versed in identifying these early signs, symptoms, and etiologies of hyponatremia. Early diagnosis and treatment can potentially avoid neurologic and systemic complications in these patients and improve outcomes. This review focuses on the causes and findings of hyponatremia in the neurologically ill patient and discusses the pathophysiology, diagnoses, and treatment strategies for commonly encountered etiologies.


2019 ◽  
Vol 24 (9) ◽  
pp. 480-487 ◽  
Author(s):  
Neus Elias ◽  
Ana-Maria Rotariu ◽  
Tobias Grave

Traumatic brain injury is common in companion animals and can occur from many different types of trauma such as road traffic accidents or bites. Following the primary injury, which is beyond control of the clinician, secondary injury occurs minutes to days following the trauma. The secondary injury will lead to neuronal death, and is the focus of treatment strategies for the emergency veterinary surgeon. Treatment of traumatic brain injury includes nursing strategies, intravenous fluid therapy, hyperosmolar therapy and diuretics, pain management, maintenance of oxygenation and ventilation, temperature regulation, anticonvulsant therapy and glycaemic control. All of these are discussed in this clinical review.


2010 ◽  
Vol 13 (2) ◽  
pp. 140-153 ◽  
Author(s):  
Taura L. Barr ◽  
Sheila Alexander ◽  
Yvette Conley

Several clinical trials have failed to demonstrate a significant effect on outcome following human traumatic brain injury (TBI) despite promising results obtained in preclinical animal studies. These failures may be due in part to a misinterpretation of the findings obtained in preclinical animal models of TBI, a misunderstanding of the complexity of the human response to TBI, limited knowledge about the biological pathways that interact to contribute to good and bad outcomes after brain injury, and the effects of genomic variability and environment on individual recovery. Recent publications suggest that data obtained from gene expression profiling studies of complex neurological diseases such as stroke, multiple sclerosis (MS), Alzheimer’s and Parkinson’s may contribute to a more informed understanding of what affects outcome following TBI. These data may help to bridge the gap between successful preclinical studies and negative clinical trials in humans to reveal novel targets for therapy. Gene expression profiling has the capability to identify biomarkers associated with response to TBI, elucidate complex genetic interactions that may play a role in outcome following TBI, and reveal biological pathways related to brain health. This review highlights the current state of the literature on gene expression profiling for neurological disease and discusses its ability to aid in unraveling the variable human response to TBI and the potential for it to offer treatment strategies in an area where we currently have limited therapeutic options primarily based on supportive care.


Sign in / Sign up

Export Citation Format

Share Document