scholarly journals Matricellular CCN proteins

2008 ◽  
Vol 2 (3-4) ◽  
pp. 57-57 ◽  
Author(s):  
Bernard Perbal
Keyword(s):  
2007 ◽  
Vol 204 (5) ◽  
pp. 1083-1093 ◽  
Author(s):  
Hye-Ryun Kang ◽  
Chun Geun Lee ◽  
Robert J. Homer ◽  
Jack A. Elias

Semaphorin (SEMA) 7A regulates neuronal and immune function. In these studies, we tested the hypothesis that SEMA 7A is also a critical regulator of tissue remodeling. These studies demonstrate that SEMA 7A and its receptors, plexin C1 and β1 integrins, are stimulated by transforming growth factor (TGF)-β1 in the murine lung. They also demonstrate that SEMA 7A plays a critical role in TGF-β1–induced fibrosis, myofibroblast hyperplasia, alveolar remodeling, and apoptosis. TGF-β1 stimulated SEMA 7A via a largely Smad 3–independent mechanism and stimulated SEMA 7A receptors, matrix proteins, CCN proteins, fibroblast growth factor 2, interleukin 13 receptor components, proteases, antiprotease, and apoptosis regulators via Smad 2/3–independent and SEMA 7A–dependent mechanisms. SEMA 7A also played an important role in the pathogenesis of bleomycin-induced pulmonary fibrosis. TGF-β1 and bleomycin also activated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB)/AKT via SEMA 7A–dependent mechanisms, and PKB/AKT inhibition diminished TGF-β1–induced fibrosis. These observations demonstrate that SEMA 7A and its receptors are induced by TGF-β1 and that SEMA 7A plays a central role in a PI3K/PKB/AKT-dependent pathway that contributes to TGF-β1–induced fibrosis and remodeling. They also demonstrate that the effects of SEMA 7A are not specific for transgenic TGF-β1, highlighting the importance of these findings for other fibrotic stimuli.


2009 ◽  
Vol 39 (1) ◽  
pp. 61-71 ◽  
Author(s):  
John Zagorski ◽  
Maria Obraztsova ◽  
Michael A. Gellar ◽  
Jeffrey A. Kline ◽  
John A. Watts

Moderate to severe pulmonary embolism (PE) can cause pulmonary arterial hypertension and right ventricular (RV) heart damage. Previous studies from our laboratory indicate that the basal outflow tract of the RV is injured and has acute inflammation followed by tissue remodeling while the apex appears normal. The present studies examine transcription responses to chronic PE in RV apex and outflow tracts using DNA microarrays to identify transcription responses by region. Changes predominated in the RV outflow tract (8,575 genes showed ≥1.5-fold expression change). Gene ontology and KEGG analyses indicated a significant decrease in genes involved in cellular respiration and energy metabolism and increases in inflammatory cell adhesion molecules and extracellular matrix proteins. Signal pathways for wound healing such as fibroblast growth factor, collagen synthesis, and CCN proteins (named for the first three members of the family: cysteine-rich protein 61, connective tissue growth factor, and nephroblastoma overexpressed gene) were strongly upregulated. In comparison, few genes (422) showed significant change in the RV apex tissue. Apex-selective genes included two genes affecting metabolism and a stretch-sensitive transcription factor (ankyrin repeat domain 1). We conclude that the RV outflow tract is subject to strong proinflammatory and profibrotic remodeling transcriptional responses in chronic PE. Severe loss of genes involved in cellular respiration is consistent with previous histology indicating a shift in cell types present within the outflow tract tissue away from highly energy-dependant cardiomyocytes to less metabolically active cells during remodeling. The apex region of the RV had few compensating adaptations.


Author(s):  
Harumi Kawaki ◽  
Satoshi Kubota ◽  
Masaharu Takigawa

2011 ◽  
Vol 10 (12) ◽  
pp. 945-963 ◽  
Author(s):  
Joon-Il Jun ◽  
Lester F. Lau

2016 ◽  
Vol 75 (Suppl 2) ◽  
pp. 522.3-523
Author(s):  
P. Henrot ◽  
C. Pain ◽  
J. Seneschal ◽  
A. Taïeb ◽  
M.-E. Truchetet ◽  
...  

2003 ◽  
Vol 178 (2) ◽  
pp. 169-175 ◽  
Author(s):  
DR Brigstock

The CCN family comprises cysteine-rich 61 (CYR61/CCN1), connective tIssue growth factor (CTGF/CCN2), nephroblastoma overexpressed (NOV/CCN3), and Wnt-induced secreted proteins-1 (WISP-1/CCN4), -2 (WISP-2/CCN5) and -3 (WISP-3/CCN6). These proteins stimulate mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Many of these activities probably occur through the ability of CCN proteins to bind and activate cell surface integrins. Accumulating evidence supports a role for these factors in endocrine pathways and endocrine-related processes. To illustrate the broad role played by the CCN family in basic and clinical endocrinology, this Article highlights the relationship between CCN proteins and hormone action, skeletal growth, placental angiogenesis, IGF-binding proteins and diabetes-induced fibrosis.


2007 ◽  
Vol 103 (4) ◽  
pp. 1395-1401 ◽  
Author(s):  
Riikka Kivelä ◽  
Heikki Kyröläinen ◽  
Harri Selänne ◽  
Paavo V. Komi ◽  
Heikki Kainulainen ◽  
...  

High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1α. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1α did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control ( P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.


Sign in / Sign up

Export Citation Format

Share Document