FCC Matrix Components and Their Combination with Y Zeolite to Enhance the Deoxygenation of Bio-oils

Author(s):  
Melisa Bertero ◽  
Juan Rafael García ◽  
Marisa Falco ◽  
Ulises Sedran
Keyword(s):  
Author(s):  
Clifford S. Rainey

The spatial distribution of V and Ni deposited within fluidized catalytic cracking (FCC) catalyst is studied because these metals contribute to catalyst deactivation. Y zeolite in FCC microspheres are high SiO2 aluminosilicates with molecular-sized channels that contain a mixture of lanthanoids. They must withstand high regeneration temperatures and retain acid sites needed for cracking of hydrocarbons, a process essential for efficient gasoline production. Zeolite in combination with V to form vanadates, or less diffusion in the channels due to coke formation, may deactivate catalyst. Other factors such as metal "skins", microsphere sintering, and attrition may also be involved. SEM of FCC fracture surfaces, AEM of Y zeolite, and electron microscopy of this work are developed to better understand and minimize catalyst deactivation.


Author(s):  
K. A. Holbrook

The dermal-epidermal junction (DEJ), or basement membrane rone, is the boundary between the epithelial and mesenchymal compartments of the skin; epidermal and fibroblastic cells in these two regions collaborate to synthesire its components. Ultrastructural studies (TEM and SEM) have defined a series of planes or layers (basal epidermal, lamina lucida, lamina densa, sublamina densa) and the morphology and density of attachment structures (hemidesmosomes, anchoring filaments, anchoring fibrils and anchoring plaques) in this region of normal skin. Change in structure of the DEJ provides information about the history of the tissue; reduplication of the lamina densa, for example, indicates a site of cell detachment or migration, or remodelling that accompanies repair of focal damage. In normal skin the structure of the DEJ is stable; in pathologic conditions it can be compromised by the congenital absence of certain structures or antigens (e.g., in the inherited disorders, epidermolysis bullosa [EB]) or by enzymatic degradation (e.g., in tumor invasion). Dissolution of the DEJ can also occur normally during the formation of epidermal appendages (e.g., hair follicles) and as melanocytes and Langerhans cells migrate into the epidermis during development.Biochemical and immunohisto/cytochemical studies have identified more than 20 molecules at the DEJ. These include well known matrix molecules (e.g., types IV and V collagen, laminin and fibronectin) and skin-specific antigens. The latter have been identified by autoantibodies or specific polyclonal or monoclonal antibodies raised against the skin, cultured cells and other epithelia. Some of the molecules of the DEJ are are present in basement membrane zones of many epithelia and thus are considered ubiquitous components (type IV, V, laminin, fibronectin, nidogen, entactin, HSPG, LDA-1, CSP [3B3]). All of them (that have been investigated in developing skin) appear ontogenetically as early as human embryonic tissue can be obtained and their expression is typically normal in patients with EB. The known properties of many of these molecules (particularly the matrix components) suggest functions they might impart to the DEJ: support of an epithelium (type IV collagen), regulation of permeability (heparan sulfate proteoglycan) or facilitation of cell attachment (fibronectin) and movement (laminin). Another group of matrix components and antigens of the DEJ includes molecules that are skin-specific or characteristic of stratified squamous epithelia (type VII collagen=LH 7:2 antigen, bullous pemphigoid antigen, AA3, GB3, KF-1,19-DEJ-1, epidermolysis bullosa acquisita antigen [EBA], AF-1 and AF-2, cicatricial pemphigoid antigen [CPA]) . These molecules are expressed in the DEJ later in development than the first group of molecules, in conjunction with the morphologic appearance of the structure they represent. Their appearance is also coordinated with specific developmental events (e.g., epidermal stratification) and the expression of molecules of differentiation in the epidermis and dermis. One or more of them is typically absent or reduced in expression in the skin of patients with heritable disorders affecting this region. There is no apparent correlation between the location of molecules in the DEJ and the stability of their expression.


2020 ◽  
Vol 10 (1-2) ◽  
pp. 58-72
Author(s):  
D. A. Sladkovskiy ◽  
K. V. Semikin ◽  
A. V. Utemov ◽  
S. P. Fedorov ◽  
E. V. Sladkovskaya ◽  
...  

1987 ◽  
Vol 52 (7) ◽  
pp. 1701-1707 ◽  
Author(s):  
Miloslav Křivánek ◽  
Nguyen Thiet Dung ◽  
Pavel Jírů

The catalytic activity of Na, H-Y zeolite samples with a varying Si/Al ratio (2·5 to 20) in the transformation of methanol was determined. The amounts of formed individual aliphatic hydrocarbons as function of reaction time were correlated with the amount of Bronsted and Lewis centres on the catalysts. The effect of coke formation on the over-all course of the reaction has been demonstrated.


1999 ◽  
Vol 64 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Miroslav Michvocík ◽  
Dušan Mravec ◽  
Milan Hronec ◽  
Agáta Smiešková ◽  
Pavol Hudec

The influence of thermal stabilization of NH4-Y zeolite and modification of USY zeolites with solutions of hydrochloric acid on the cyclohexylation of naphthalene in the liquid phase was studied. Removal of the part of extra-framework aluminium from zeolite structure has a positive effect on both conversion of naphthalene and amount of dicyclohexylnaphthalenes formed. Modification of zeolites leads to an increase in conversion and selectivity of β-substitution in the naphthalene cyclohexylation.


2008 ◽  
Vol 73 (8-9) ◽  
pp. 1061-1088
Author(s):  
Sule Rabiu ◽  
Sulaiman Al-Khattaf

In this work three important aromatic transformations, namely: toluene disproportionation, toluene methylation and m-xylene isomerization, were investigated in a riser simulator which closely mimics the operation of commercial fluidized bed reactors. The transformations were studied over a ZSM-5 based catalyst with medium acidity of 0.23 mmol/g and a series of Y zeolites of acidities between 0.55 and 0.03 mmol/g. For pure toluene feed, it was observed that conversion over the ZSM-5 based catalyst and the weakly acidic Y zeolite (USY-1) was very low. However, with the highly acidic Y zeolite (H-Y), significant toluene conversion was observed with paring reaction more prominent than disproportionation. On the other hand, when toluene was alkylated with methanol, higher toluene conversions were achieved over both the ZSM-5 based and the weakly acidic USY-1 catalysts as compared to when pure toluene feed was used. In addition, p-xylene/o-xylene (P/O) ratios higher than the equilibrium values were obtained in the reaction product over both catalysts. Finally, for m-xylene isomerization it was found that m-xylene conversion increased initially as the acidity of the catalyst increased up to 0.1 mmol/g beyond which any further increase in acidity resulted in a slight decrease in the m-xylene conversion.


2021 ◽  
pp. 1-15
Author(s):  
Dilan Khalili ◽  
Christina Kalcher ◽  
Stefan Baumgartner ◽  
Ulrich Theopold

Fibrotic lesions accompany several pathological conditions, including tumors. We show that expression of a dominant-active form of the Ras oncogene in <i>Drosophila</i> salivary glands (SGs) leads to redistribution of components of the basement membrane (BM) and fibrotic lesions. Similar to several types of mammalian fibrosis, the disturbed BM attracts clot components, including insect transglutaminase and phenoloxidase. SG epithelial cells show reduced apicobasal polarity accompanied by a loss of secretory activity. Both the fibrotic lesions and the reduced cell polarity are alleviated by ectopic expression of the antimicrobial peptide drosomycin (Drs), which also restores the secretory activity of the SGs. In addition to extracellular matrix components, both Drs and F-actin localize to fibrotic lesions.


2021 ◽  
Vol 19 (1) ◽  
pp. 745-754
Author(s):  
Khoirina Dwi Nugrahaningtyas ◽  
Eddy Heraldy ◽  
Rachmadani ◽  
Yuniawan Hidayat ◽  
Indriana Kartini

Abstract The properties of three types of CoMo/USY catalysts with different synthesized methods have been studied. The sequential and co-impregnation methods followed by activation using calcination and reduction process have been conducted. The properties of the catalysts were examined using Fourier-transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) with refinement, and surface area analyzer (SAA). The FTIR spectrum study revealed the enhanced intensity of its Bronsted acid site, and the XRD diffractogram pattern verified the composition of pure metals, oxides, and alloys in the catalyst. The SAA demonstrated the mesoporous features of the catalyst. Scanning electron microscopy showed an irregular particle morphology. Additional analysis using the transmission electron microscopy indicated that the metal has successfully impregnated without damaging the USY structure.


Sign in / Sign up

Export Citation Format

Share Document